使用集成了 LAMP 和级联酶反应的个人葡萄糖计快速、经济地现场检测植物病毒

IF 5.5 3区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS BioChip Journal Pub Date : 2024-03-26 DOI:10.1007/s13206-024-00149-z
Hyogu Han, Yang Chan Park, Kwang-Kyu Kim, Hak Ju Kim, Han Kyu Seo, Jeanho Park, Jae Sun Moon, Jun Ki Ahn
{"title":"使用集成了 LAMP 和级联酶反应的个人葡萄糖计快速、经济地现场检测植物病毒","authors":"Hyogu Han, Yang Chan Park, Kwang-Kyu Kim, Hak Ju Kim, Han Kyu Seo, Jeanho Park, Jae Sun Moon, Jun Ki Ahn","doi":"10.1007/s13206-024-00149-z","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel method for detecting plant viruses by combining a personal glucose meter (PGM)-based cascade enzymatic reaction (CER) with loop-mediated isothermal amplification (LAMP). This technique exploits the consumption of deoxynucleotides (dNTPs) during the LAMP process as a substrate for CER, leading to a measurable change in glucose concentration. This change can be detected using PGM, enabling the identification of the presence or absence of the target virus. This method provide a more efficient alternative to traditional methods like ELISA and PCR. It overcomes their limitation in terms of laboratory equipment requirement, sensitivity, and on-site applicability. In addition, we also developed a portable diagnostic device that integrates a heating block with a glucose measurement module. By utilizing this device, the rapid and precise detection of various plant viruses, including horseradish latent virus (HRLV), onion yellow dwarf virus (OYDV), soybean yellow common mosaic virus (SYCMV), cnidium vein yellowing virus 1 (CnVYV-1), and perilla mosaic virus (PerMV), successfully achieved within 40 min. This advancement offers a practical and cost-effective solution for managing plant pathogen threats in agriculture.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Cost-Effective On-site Detection of Plant Viruses Using Personal Glucose Meters Integrated with LAMP and Cascade Enzymatic Reactions\",\"authors\":\"Hyogu Han, Yang Chan Park, Kwang-Kyu Kim, Hak Ju Kim, Han Kyu Seo, Jeanho Park, Jae Sun Moon, Jun Ki Ahn\",\"doi\":\"10.1007/s13206-024-00149-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a novel method for detecting plant viruses by combining a personal glucose meter (PGM)-based cascade enzymatic reaction (CER) with loop-mediated isothermal amplification (LAMP). This technique exploits the consumption of deoxynucleotides (dNTPs) during the LAMP process as a substrate for CER, leading to a measurable change in glucose concentration. This change can be detected using PGM, enabling the identification of the presence or absence of the target virus. This method provide a more efficient alternative to traditional methods like ELISA and PCR. It overcomes their limitation in terms of laboratory equipment requirement, sensitivity, and on-site applicability. In addition, we also developed a portable diagnostic device that integrates a heating block with a glucose measurement module. By utilizing this device, the rapid and precise detection of various plant viruses, including horseradish latent virus (HRLV), onion yellow dwarf virus (OYDV), soybean yellow common mosaic virus (SYCMV), cnidium vein yellowing virus 1 (CnVYV-1), and perilla mosaic virus (PerMV), successfully achieved within 40 min. This advancement offers a practical and cost-effective solution for managing plant pathogen threats in agriculture.</p>\",\"PeriodicalId\":8768,\"journal\":{\"name\":\"BioChip Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioChip Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13206-024-00149-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00149-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种检测植物病毒的新方法,它将基于个人血糖仪(PGM)的级联酶反应(CER)与环介导等温扩增(LAMP)相结合。该技术利用 LAMP 过程中脱氧核苷酸(dNTPs)的消耗作为 CER 的底物,从而导致葡萄糖浓度发生可测量的变化。这种变化可通过 PGM 检测到,从而确定目标病毒的存在与否。这种方法比 ELISA 和 PCR 等传统方法更有效。它克服了传统方法在实验室设备要求、灵敏度和现场适用性方面的局限性。此外,我们还开发了一种集成了加热块和葡萄糖测量模块的便携式诊断设备。利用该设备,我们在 40 分钟内成功实现了对各种植物病毒的快速、精确检测,包括辣根潜伏病毒 (HRLV)、洋葱黄矮病毒 (OYDV)、大豆黄共镶嵌病毒 (SYCMV)、网脉黄化病毒 1 (CnVYV-1) 和紫苏镶嵌病毒 (PerMV)。这一进步为管理农业中的植物病原体威胁提供了一种实用且经济高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid and Cost-Effective On-site Detection of Plant Viruses Using Personal Glucose Meters Integrated with LAMP and Cascade Enzymatic Reactions

This study presents a novel method for detecting plant viruses by combining a personal glucose meter (PGM)-based cascade enzymatic reaction (CER) with loop-mediated isothermal amplification (LAMP). This technique exploits the consumption of deoxynucleotides (dNTPs) during the LAMP process as a substrate for CER, leading to a measurable change in glucose concentration. This change can be detected using PGM, enabling the identification of the presence or absence of the target virus. This method provide a more efficient alternative to traditional methods like ELISA and PCR. It overcomes their limitation in terms of laboratory equipment requirement, sensitivity, and on-site applicability. In addition, we also developed a portable diagnostic device that integrates a heating block with a glucose measurement module. By utilizing this device, the rapid and precise detection of various plant viruses, including horseradish latent virus (HRLV), onion yellow dwarf virus (OYDV), soybean yellow common mosaic virus (SYCMV), cnidium vein yellowing virus 1 (CnVYV-1), and perilla mosaic virus (PerMV), successfully achieved within 40 min. This advancement offers a practical and cost-effective solution for managing plant pathogen threats in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioChip Journal
BioChip Journal 生物-生化研究方法
CiteScore
7.70
自引率
16.30%
发文量
47
审稿时长
6-12 weeks
期刊介绍: BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.
期刊最新文献
Advancing Blood–Brain Barrier-on-a-Chip Models Through Numerical Simulations Advanced Microfluidic Platform for Tumor Spheroid Formation and Cultivation Fabricated from OSTE+ Polymer Classification of DNA Mixtures by Nanoelectrokinetic Driftless Preconcentration Fabrication of Nephrotoxic Model by Kidney-on-a-Chip Implementing Renal Proximal Tubular Function In Vitro Development of Multi-HRP-Conjugated Branched PEI/Antibody-Functionalized Gold Nanoparticles for Ultra-Sensitive ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1