{"title":"基于百叶窗形缺陷地面结构的低侧贝馈电网络设计","authors":"Zhang Yuan, Xi Songtao","doi":"10.1155/2024/3452375","DOIUrl":null,"url":null,"abstract":"In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"234 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Low Sidelobe Feed Network Based on the Louver-Shaped Defected Ground Structure\",\"authors\":\"Zhang Yuan, Xi Songtao\",\"doi\":\"10.1155/2024/3452375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3452375\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/3452375","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a Low Sidelobe Feed Network Based on the Louver-Shaped Defected Ground Structure
In this paper, a low sidelobe feeding network has been developed utilizing the louver-shaped defected ground structure (DGS). By adjusting the louver-shaped DGS, the output amplitude and phase of the corresponding ports can be altered, minimizing deviations from theoretical values. This enables antenna arrays equipped with this feeding network to more easily achieve low sidelobe performance. The impact of the louver-shaped DGS on the amplitude and phase of each port in the power divider within the feeding network is analyzed, and a 16-channel feeding network incorporating the louver-shaped DGS has been designed, fabricated, and then measured. The test results indicate that the performance of the line-feeding network is effectively improved by designing and adjusting the louver-shaped DGS. Through the debugging procedure, the amplitude deviation of the feeding network has been reduced from ±0.45 dB to ±0.2 dB, while the phase deviation of the feeding network has been reduced from ±8° to ±2.5°, and the maximum value of the first sidelobe has been reduced from −24.2 dB to −28.1 dB.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.