Tim Pesch, Erhard Cramer, Adriano Polpo, Edward Cripps
{"title":"用扩展序列统计进行估算:链接函数法","authors":"Tim Pesch, Erhard Cramer, Adriano Polpo, Edward Cripps","doi":"10.1002/asmb.2855","DOIUrl":null,"url":null,"abstract":"<p>The model of extended sequential order statistics (ESOS) comprises of two valuable characteristics making the model powerful when modelling multi-component systems. First, components can be assumed to be heterogeneous and second, component lifetime distributions can change upon failure of other components. This degree of flexibility comes at the cost of a large number of parameters. The exact number depends on the system size and the observation depth and can quickly exceed the number of observations available. Consequently, the model would benefit from a reduction in the dimension of the parameter space to make it more readily applicable to real-world problems. In this article, we introduce link functions to the ESOS model to reduce the dimension of the parameter space while retaining the flexibility of the model. These functions model the relation between model parameters of a component across levels. By construction the proposed ‘link estimates’ conveniently yield ordered model estimates. We demonstrate how those ordered estimates lead to better results compared to their unordered counterparts, particularly when sample sizes are small.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2855","citationCount":"0","resultStr":"{\"title\":\"Estimation with extended sequential order statistics: A link function approach\",\"authors\":\"Tim Pesch, Erhard Cramer, Adriano Polpo, Edward Cripps\",\"doi\":\"10.1002/asmb.2855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The model of extended sequential order statistics (ESOS) comprises of two valuable characteristics making the model powerful when modelling multi-component systems. First, components can be assumed to be heterogeneous and second, component lifetime distributions can change upon failure of other components. This degree of flexibility comes at the cost of a large number of parameters. The exact number depends on the system size and the observation depth and can quickly exceed the number of observations available. Consequently, the model would benefit from a reduction in the dimension of the parameter space to make it more readily applicable to real-world problems. In this article, we introduce link functions to the ESOS model to reduce the dimension of the parameter space while retaining the flexibility of the model. These functions model the relation between model parameters of a component across levels. By construction the proposed ‘link estimates’ conveniently yield ordered model estimates. We demonstrate how those ordered estimates lead to better results compared to their unordered counterparts, particularly when sample sizes are small.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2855\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2855\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2855","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimation with extended sequential order statistics: A link function approach
The model of extended sequential order statistics (ESOS) comprises of two valuable characteristics making the model powerful when modelling multi-component systems. First, components can be assumed to be heterogeneous and second, component lifetime distributions can change upon failure of other components. This degree of flexibility comes at the cost of a large number of parameters. The exact number depends on the system size and the observation depth and can quickly exceed the number of observations available. Consequently, the model would benefit from a reduction in the dimension of the parameter space to make it more readily applicable to real-world problems. In this article, we introduce link functions to the ESOS model to reduce the dimension of the parameter space while retaining the flexibility of the model. These functions model the relation between model parameters of a component across levels. By construction the proposed ‘link estimates’ conveniently yield ordered model estimates. We demonstrate how those ordered estimates lead to better results compared to their unordered counterparts, particularly when sample sizes are small.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.