{"title":"城市电动摩托车使用率的社会人口变化区域比较","authors":"Priyanka Verma, Grant McKenzie","doi":"10.1177/23998083241240195","DOIUrl":null,"url":null,"abstract":"In recent years we have witnessed explosive growth in the shared, free-floating, electric scooter industry. While still controversial in many North American cities, a number of large e-scooter operators have managed to carve out a piece of the urban transportation landscape. As these vehicles shift from novelty services to increasingly reliable modes of short personal travel, the discussion has turned to investigating who exactly benefits from these micromobility services and who are being left behind. Though population surveys have been administered to identify the socio-demographic characteristics of e-scooter riders in the past, little work has linked these characteristics through trips, or investigated the regional variation in these demographic factors. In this work we explore the variability and similarities in e-scooter rider characteristics across three major U.S. cities. To accomplish this, we apply a Moran’s Eigenvector Spatial Filtering linear regression model and compare our results to more commonly used spatial regression approaches. Our results indicate that the spatial filtering approach outperforms other methods in identifying socio-demographic characteristics of e-scooter users, across multiple regions. We find that many socio-demographics associated with e-scooter usage are regionally variant, despite younger users making up the core user base in all cities. There are variations in usage based on gender, income, and race across cities with Black and Hispanic populations remaining underserved. The implications of these findings are discussed.","PeriodicalId":11863,"journal":{"name":"Environment and Planning B: Urban Analytics and City Science","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional comparison of socio-demographic variation in urban E-scooter usage\",\"authors\":\"Priyanka Verma, Grant McKenzie\",\"doi\":\"10.1177/23998083241240195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years we have witnessed explosive growth in the shared, free-floating, electric scooter industry. While still controversial in many North American cities, a number of large e-scooter operators have managed to carve out a piece of the urban transportation landscape. As these vehicles shift from novelty services to increasingly reliable modes of short personal travel, the discussion has turned to investigating who exactly benefits from these micromobility services and who are being left behind. Though population surveys have been administered to identify the socio-demographic characteristics of e-scooter riders in the past, little work has linked these characteristics through trips, or investigated the regional variation in these demographic factors. In this work we explore the variability and similarities in e-scooter rider characteristics across three major U.S. cities. To accomplish this, we apply a Moran’s Eigenvector Spatial Filtering linear regression model and compare our results to more commonly used spatial regression approaches. Our results indicate that the spatial filtering approach outperforms other methods in identifying socio-demographic characteristics of e-scooter users, across multiple regions. We find that many socio-demographics associated with e-scooter usage are regionally variant, despite younger users making up the core user base in all cities. There are variations in usage based on gender, income, and race across cities with Black and Hispanic populations remaining underserved. The implications of these findings are discussed.\",\"PeriodicalId\":11863,\"journal\":{\"name\":\"Environment and Planning B: Urban Analytics and City Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Planning B: Urban Analytics and City Science\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/23998083241240195\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Planning B: Urban Analytics and City Science","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/23998083241240195","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Regional comparison of socio-demographic variation in urban E-scooter usage
In recent years we have witnessed explosive growth in the shared, free-floating, electric scooter industry. While still controversial in many North American cities, a number of large e-scooter operators have managed to carve out a piece of the urban transportation landscape. As these vehicles shift from novelty services to increasingly reliable modes of short personal travel, the discussion has turned to investigating who exactly benefits from these micromobility services and who are being left behind. Though population surveys have been administered to identify the socio-demographic characteristics of e-scooter riders in the past, little work has linked these characteristics through trips, or investigated the regional variation in these demographic factors. In this work we explore the variability and similarities in e-scooter rider characteristics across three major U.S. cities. To accomplish this, we apply a Moran’s Eigenvector Spatial Filtering linear regression model and compare our results to more commonly used spatial regression approaches. Our results indicate that the spatial filtering approach outperforms other methods in identifying socio-demographic characteristics of e-scooter users, across multiple regions. We find that many socio-demographics associated with e-scooter usage are regionally variant, despite younger users making up the core user base in all cities. There are variations in usage based on gender, income, and race across cities with Black and Hispanic populations remaining underserved. The implications of these findings are discussed.