用于体外肌动蛋白束电生理学表征的微流控生物传感器

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Microelectromechanical Systems Pub Date : 2024-03-25 DOI:10.1109/JMEMS.2024.3376238
Jorge Manrique Castro;Nilab Azim;Nicholas Castaneda;Ellen Kang;Swaminathan Rajaraman
{"title":"用于体外肌动蛋白束电生理学表征的微流控生物传感器","authors":"Jorge Manrique Castro;Nilab Azim;Nicholas Castaneda;Ellen Kang;Swaminathan Rajaraman","doi":"10.1109/JMEMS.2024.3376238","DOIUrl":null,"url":null,"abstract":"The essential cytoskeletal protein actin and its functions are paramount for motility, communication, and locomotive processes in eukaryotic cells. Detection and quantification of actin protein is of great interest for in vitro studies potentially elucidating unknown cellular mechanisms affecting drug responses with an extension to the study of disease states (e.g., study of neurodegenerative disorders). To this end, development of biomedical platforms and biosensors plays an important role in providing reliable and sensitive devices to study such intracellular constructs. Here, we present for the first time the microfabrication, characterization, testing, and electrical/interfacial modeling of a microfluidic biosensor for actin protein characterization. The device allows for the interaction and characterization of actin bundles using electrochemical impedance spectroscopy (EIS). The device was tested with \n<inline-formula> <tex-math>$1 \\mu \\text{M}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$8 \\mu \\text{M}$ </tex-math></inline-formula>\n actin bundles concentrations producing shifts in impedance response in the significant biological frequency of 1 kHz from 17 to 30 kOhm (\n<inline-formula> <tex-math>$\\text{k}\\Omega $ </tex-math></inline-formula>\n). Interfacial capacitance and electrical modeling showed that at increasing actin bundles concentrations, the distance from the electrode to the diffusion region (Debye length) was reduced from 386 to 136, and from 1526 to 539 Å. Interfacial capacitance was evaluated for \n<inline-formula> <tex-math>$1 \\mu \\text{M}$ </tex-math></inline-formula>\n concentration at two dielectric constants (\n<inline-formula> <tex-math>$\\boldsymbol {\\varepsilon }_{\\mathbf {r}}$ </tex-math></inline-formula>\n = 5 and 78) resulting in 3.8 and 15.6 mF/m2 respectively. Similarly, for \n<inline-formula> <tex-math>$8 \\mu \\text{M}$ </tex-math></inline-formula>\n concentration, interfacial capacitance resulted in 10.1 and 43.3 mF/m2 for the same values of \n<inline-formula> <tex-math>$\\boldsymbol {\\varepsilon }_{\\mathbf {r}}$ </tex-math></inline-formula>\n. Based on these theoretical calculations, the interface model could accurately predict the quantification of the actin bundles previously elucidated by the experimental EIS method. [2023-0180]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"350-361"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Biosensor for the In Vitro Electrophysiological Characterization of Actin Bundles\",\"authors\":\"Jorge Manrique Castro;Nilab Azim;Nicholas Castaneda;Ellen Kang;Swaminathan Rajaraman\",\"doi\":\"10.1109/JMEMS.2024.3376238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The essential cytoskeletal protein actin and its functions are paramount for motility, communication, and locomotive processes in eukaryotic cells. Detection and quantification of actin protein is of great interest for in vitro studies potentially elucidating unknown cellular mechanisms affecting drug responses with an extension to the study of disease states (e.g., study of neurodegenerative disorders). To this end, development of biomedical platforms and biosensors plays an important role in providing reliable and sensitive devices to study such intracellular constructs. Here, we present for the first time the microfabrication, characterization, testing, and electrical/interfacial modeling of a microfluidic biosensor for actin protein characterization. The device allows for the interaction and characterization of actin bundles using electrochemical impedance spectroscopy (EIS). The device was tested with \\n<inline-formula> <tex-math>$1 \\\\mu \\\\text{M}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$8 \\\\mu \\\\text{M}$ </tex-math></inline-formula>\\n actin bundles concentrations producing shifts in impedance response in the significant biological frequency of 1 kHz from 17 to 30 kOhm (\\n<inline-formula> <tex-math>$\\\\text{k}\\\\Omega $ </tex-math></inline-formula>\\n). Interfacial capacitance and electrical modeling showed that at increasing actin bundles concentrations, the distance from the electrode to the diffusion region (Debye length) was reduced from 386 to 136, and from 1526 to 539 Å. Interfacial capacitance was evaluated for \\n<inline-formula> <tex-math>$1 \\\\mu \\\\text{M}$ </tex-math></inline-formula>\\n concentration at two dielectric constants (\\n<inline-formula> <tex-math>$\\\\boldsymbol {\\\\varepsilon }_{\\\\mathbf {r}}$ </tex-math></inline-formula>\\n = 5 and 78) resulting in 3.8 and 15.6 mF/m2 respectively. Similarly, for \\n<inline-formula> <tex-math>$8 \\\\mu \\\\text{M}$ </tex-math></inline-formula>\\n concentration, interfacial capacitance resulted in 10.1 and 43.3 mF/m2 for the same values of \\n<inline-formula> <tex-math>$\\\\boldsymbol {\\\\varepsilon }_{\\\\mathbf {r}}$ </tex-math></inline-formula>\\n. Based on these theoretical calculations, the interface model could accurately predict the quantification of the actin bundles previously elucidated by the experimental EIS method. [2023-0180]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 3\",\"pages\":\"350-361\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10477650/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10477650/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

细胞骨架蛋白肌动蛋白及其功能对真核细胞的运动、交流和动力过程至关重要。肌动蛋白的检测和定量对于体外研究具有重大意义,有可能阐明影响药物反应的未知细胞机制,并扩展到疾病状态研究(如神经退行性疾病研究)。为此,生物医学平台和生物传感器的开发在提供可靠、灵敏的设备以研究此类细胞内结构方面发挥着重要作用。在这里,我们首次展示了用于肌动蛋白表征的微流控生物传感器的微加工、表征、测试和电学/界面建模。该装置可利用电化学阻抗光谱(EIS)对肌动蛋白束进行相互作用和表征。该装置用 1 \mu \text{M}$ 和 8 \mu \text{M}$ 的肌动蛋白束浓度进行了测试,在 1 kHz 的重要生物频率下产生了从 17 到 30 kOhm ($\text{k}\Omega $)的阻抗响应变化。对 1 \mu \text{M}$ 浓度和两个介电常数($\boldsymbol {\varepsilon }_{\mathbf {r}}$ = 5 和 78)下的界面电容进行了评估,结果分别为 3.8 和 15.6 mF/m2。同样,对于 8 \mu \text{M}$浓度,在相同的 $\boldsymbol {\varepsilon }_{\mathbf {r}}$ 值下,界面电容分别为 10.1 和 43.3 mF/m2 。基于这些理论计算,界面模型可以准确预测之前通过实验 EIS 方法阐明的肌动蛋白束的量化。[2023-0180]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic Biosensor for the In Vitro Electrophysiological Characterization of Actin Bundles
The essential cytoskeletal protein actin and its functions are paramount for motility, communication, and locomotive processes in eukaryotic cells. Detection and quantification of actin protein is of great interest for in vitro studies potentially elucidating unknown cellular mechanisms affecting drug responses with an extension to the study of disease states (e.g., study of neurodegenerative disorders). To this end, development of biomedical platforms and biosensors plays an important role in providing reliable and sensitive devices to study such intracellular constructs. Here, we present for the first time the microfabrication, characterization, testing, and electrical/interfacial modeling of a microfluidic biosensor for actin protein characterization. The device allows for the interaction and characterization of actin bundles using electrochemical impedance spectroscopy (EIS). The device was tested with $1 \mu \text{M}$ and $8 \mu \text{M}$ actin bundles concentrations producing shifts in impedance response in the significant biological frequency of 1 kHz from 17 to 30 kOhm ( $\text{k}\Omega $ ). Interfacial capacitance and electrical modeling showed that at increasing actin bundles concentrations, the distance from the electrode to the diffusion region (Debye length) was reduced from 386 to 136, and from 1526 to 539 Å. Interfacial capacitance was evaluated for $1 \mu \text{M}$ concentration at two dielectric constants ( $\boldsymbol {\varepsilon }_{\mathbf {r}}$ = 5 and 78) resulting in 3.8 and 15.6 mF/m2 respectively. Similarly, for $8 \mu \text{M}$ concentration, interfacial capacitance resulted in 10.1 and 43.3 mF/m2 for the same values of $\boldsymbol {\varepsilon }_{\mathbf {r}}$ . Based on these theoretical calculations, the interface model could accurately predict the quantification of the actin bundles previously elucidated by the experimental EIS method. [2023-0180]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
期刊最新文献
Front Cover Table of Contents Journal of Microelectromechanical Systems Publication Information TechRxiv: Share Your Preprint Research with the World! Capacitive Micromachined Transducers With Out-of-Plane Repulsive Actuation for Enhancing Ultrasound Transmission in Air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1