冷喷铝/准晶复合涂层耐磨性对比研究

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Journal of Thermal Spray Technology Pub Date : 2024-03-25 DOI:10.1007/s11666-024-01758-8
Reza Jafari, Jan Cizek, Frantisek Lukac, Ladislav Cvrcek, Matej Buril, Jan Walter, Mari Honkanen, Minnamari Vippola, Heli Koivuluoto
{"title":"冷喷铝/准晶复合涂层耐磨性对比研究","authors":"Reza Jafari,&nbsp;Jan Cizek,&nbsp;Frantisek Lukac,&nbsp;Ladislav Cvrcek,&nbsp;Matej Buril,&nbsp;Jan Walter,&nbsp;Mari Honkanen,&nbsp;Minnamari Vippola,&nbsp;Heli Koivuluoto","doi":"10.1007/s11666-024-01758-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cold spray (CS) technology has proven a great potential in the production of composite coatings, enabling the production of materials with superior qualities such as enhanced tribological behavior. This study aims to investigate the tribological properties of CS Al-based composite coatings reinforced by quasicrystalline (QC) particles. Two different Al alloys were used as the matrix, AA 6061 and AA 2024, and mixed with Al-based QC particles (Al-Cr-Fe-Cu) at different Al/QC ratios. A room-temperature ball-on-disc test was then used to evaluate the wear resistance of the composite CS coatings in air and compared to those of the non-reinforced Al alloy CS coatings as well as a cast counterpart (AA 6061-T6). We have demonstrated that CS could be employed to produce thick and dense Al-QC composites that can retain up to about 50 wt.% QC reinforcement in the structure. The incorporation of the QC particles increased the wear resistance by a factor of 7.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 2-3","pages":"705 - 718"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01758-8.pdf","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study on Wear Resistance of Cold-Sprayed Aluminum/Quasicrystal Composite Coatings\",\"authors\":\"Reza Jafari,&nbsp;Jan Cizek,&nbsp;Frantisek Lukac,&nbsp;Ladislav Cvrcek,&nbsp;Matej Buril,&nbsp;Jan Walter,&nbsp;Mari Honkanen,&nbsp;Minnamari Vippola,&nbsp;Heli Koivuluoto\",\"doi\":\"10.1007/s11666-024-01758-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cold spray (CS) technology has proven a great potential in the production of composite coatings, enabling the production of materials with superior qualities such as enhanced tribological behavior. This study aims to investigate the tribological properties of CS Al-based composite coatings reinforced by quasicrystalline (QC) particles. Two different Al alloys were used as the matrix, AA 6061 and AA 2024, and mixed with Al-based QC particles (Al-Cr-Fe-Cu) at different Al/QC ratios. A room-temperature ball-on-disc test was then used to evaluate the wear resistance of the composite CS coatings in air and compared to those of the non-reinforced Al alloy CS coatings as well as a cast counterpart (AA 6061-T6). We have demonstrated that CS could be employed to produce thick and dense Al-QC composites that can retain up to about 50 wt.% QC reinforcement in the structure. The incorporation of the QC particles increased the wear resistance by a factor of 7.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 2-3\",\"pages\":\"705 - 718\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11666-024-01758-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01758-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01758-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

冷喷(CS)技术已被证明在生产复合涂层方面具有巨大潜力,可生产出具有卓越品质(如增强摩擦学行为)的材料。本研究旨在探讨由准晶体(QC)颗粒增强的 CS 铝基复合涂层的摩擦学特性。研究使用了两种不同的铝合金(AA 6061 和 AA 2024)作为基体,并以不同的铝/QC 比混合了铝基 QC 颗粒(铝-铬-铁-铜)。然后使用室温球盘试验来评估复合 CS 涂层在空气中的耐磨性,并与非增强型铝合金 CS 涂层和铸件(AA 6061-T6)的耐磨性进行比较。我们已经证明,CS 可以用来生产厚而致密的 Al-QC 复合材料,在结构上可以保留高达约 50 wt.% 的 QC 增强成分。QC 颗粒的加入使耐磨性提高了 7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on Wear Resistance of Cold-Sprayed Aluminum/Quasicrystal Composite Coatings

Cold spray (CS) technology has proven a great potential in the production of composite coatings, enabling the production of materials with superior qualities such as enhanced tribological behavior. This study aims to investigate the tribological properties of CS Al-based composite coatings reinforced by quasicrystalline (QC) particles. Two different Al alloys were used as the matrix, AA 6061 and AA 2024, and mixed with Al-based QC particles (Al-Cr-Fe-Cu) at different Al/QC ratios. A room-temperature ball-on-disc test was then used to evaluate the wear resistance of the composite CS coatings in air and compared to those of the non-reinforced Al alloy CS coatings as well as a cast counterpart (AA 6061-T6). We have demonstrated that CS could be employed to produce thick and dense Al-QC composites that can retain up to about 50 wt.% QC reinforcement in the structure. The incorporation of the QC particles increased the wear resistance by a factor of 7.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
期刊最新文献
Professor Pierre Léon Fauchais: “Passion and Courage” (1937–2024) Microstructural Evolution and Tribological Responses of Heat-Treated AlFeCoNiCr–Cr3C2 Coating In Situ Measurement of Track Shape in Cold Spray Deposits Design and Development of Cost-Effective Equipment for Tribological Evaluation of Thermally Sprayed Abradable Coatings Impact of Hydroxyapatite Powder Particle Size on Mechanical and Electrochemical Properties of Flame-Sprayed Coatings for Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1