{"title":"成纤维细胞/三维支架复合物可促进皮肤缺损大鼠的伤口愈合。","authors":"Ting Jiang, Qiang Liu, Er-Chang Xu, Si-Yu He, Hong-Yan Liu, Chao Tian, Lan-Fang Zhang, Ze-Long Yang","doi":"10.1080/21688370.2024.2334544","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to construct a three-dimensional nano-skin scaffold material in vitro and study its promoting effect on wound healing in vivo. In this study, hybrid constructs of three-dimensional (3D) scaffolds were successfully fabricated by combination of type I collagen (COL-1) and polylactic-glycolic acid (PLGA). Fibroblasts and human umbilical cord mesenchymal stem cells (hUCMSCs) were used to implanted into 3D scaffolds and constructed into SD skin scaffolds in vitro. Finally, the fibroblasts/scaffolds complexes were inoculated on the surface of rat wound skin to study the promoting effect of the complex on wound healing. In our study, we successfully built a 3D scaffold, which had a certain porosity. Meanwhile, the content of COL-1 in the cell supernatant of fibroblast/scaffold complexes was increased. Furthermore, the expression of F-actin, CD105, integrin β, VEGF, and COL-1 was up-regulated in hUCMSC/scaffold complexes compared with the control group. In vivo, fibroblast/scaffold complexes promoted wound healing in rats. Our data suggested that the collagen Ⅳ and vimentin were elevated and collagen fibers were neatly arranged in the fibroblast/scaffold complex group was significantly higher than that in the scaffold group. Taken together, fibroblast/scaffold complexes were expected to be novel materials for treating skin defects.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2334544"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblasts/three-dimensional scaffolds complexes promote wound healing in rats with skin defects.\",\"authors\":\"Ting Jiang, Qiang Liu, Er-Chang Xu, Si-Yu He, Hong-Yan Liu, Chao Tian, Lan-Fang Zhang, Ze-Long Yang\",\"doi\":\"10.1080/21688370.2024.2334544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aim to construct a three-dimensional nano-skin scaffold material in vitro and study its promoting effect on wound healing in vivo. In this study, hybrid constructs of three-dimensional (3D) scaffolds were successfully fabricated by combination of type I collagen (COL-1) and polylactic-glycolic acid (PLGA). Fibroblasts and human umbilical cord mesenchymal stem cells (hUCMSCs) were used to implanted into 3D scaffolds and constructed into SD skin scaffolds in vitro. Finally, the fibroblasts/scaffolds complexes were inoculated on the surface of rat wound skin to study the promoting effect of the complex on wound healing. In our study, we successfully built a 3D scaffold, which had a certain porosity. Meanwhile, the content of COL-1 in the cell supernatant of fibroblast/scaffold complexes was increased. Furthermore, the expression of F-actin, CD105, integrin β, VEGF, and COL-1 was up-regulated in hUCMSC/scaffold complexes compared with the control group. In vivo, fibroblast/scaffold complexes promoted wound healing in rats. Our data suggested that the collagen Ⅳ and vimentin were elevated and collagen fibers were neatly arranged in the fibroblast/scaffold complex group was significantly higher than that in the scaffold group. Taken together, fibroblast/scaffold complexes were expected to be novel materials for treating skin defects.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2334544\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2334544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2334544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Fibroblasts/three-dimensional scaffolds complexes promote wound healing in rats with skin defects.
We aim to construct a three-dimensional nano-skin scaffold material in vitro and study its promoting effect on wound healing in vivo. In this study, hybrid constructs of three-dimensional (3D) scaffolds were successfully fabricated by combination of type I collagen (COL-1) and polylactic-glycolic acid (PLGA). Fibroblasts and human umbilical cord mesenchymal stem cells (hUCMSCs) were used to implanted into 3D scaffolds and constructed into SD skin scaffolds in vitro. Finally, the fibroblasts/scaffolds complexes were inoculated on the surface of rat wound skin to study the promoting effect of the complex on wound healing. In our study, we successfully built a 3D scaffold, which had a certain porosity. Meanwhile, the content of COL-1 in the cell supernatant of fibroblast/scaffold complexes was increased. Furthermore, the expression of F-actin, CD105, integrin β, VEGF, and COL-1 was up-regulated in hUCMSC/scaffold complexes compared with the control group. In vivo, fibroblast/scaffold complexes promoted wound healing in rats. Our data suggested that the collagen Ⅳ and vimentin were elevated and collagen fibers were neatly arranged in the fibroblast/scaffold complex group was significantly higher than that in the scaffold group. Taken together, fibroblast/scaffold complexes were expected to be novel materials for treating skin defects.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.