Amreen Khan, Abhishek Tripathi, Mayuri Gandhi, Jayesh Bellare, Rohit Srivastava
{"title":"开发用于乳腺癌靶向光化学疗法的可注射上转换纳米粒子共轭多柔比星治疗仪电纺纳米结构。","authors":"Amreen Khan, Abhishek Tripathi, Mayuri Gandhi, Jayesh Bellare, Rohit Srivastava","doi":"10.1002/jbm.a.37713","DOIUrl":null,"url":null,"abstract":"<p>Nanotheranostic-based photochemotherapies with targeted drug delivery have considerably surfaced in cancer therapy. In the presented work, polyethyleneimine-coated upconversion nanoparticles were engineered to conjugate covalently with doxorubicin. Upconversion nanoparticles (UCNP)-Doxorubicin (DOX)/synthesized epidermal growth factor receptor-targeting peptide blended with polymer composite was electrospun and formulated as the injectable dosage form. The size of the UCNP and the nanofiber diameter were assessed as 26.75 ± 1.54 and 162 ± 2.82 nm, respectively. The optimized ratio of dopants resulted in UCNP photoluminescence with maximum emission intensity at around 800 nm upon 980 nm excitation wavelength. The paramagnetic nature of UCNPs and amide conjugation with the drug was confirmed analytically. The loading capacity of UCNP for doxorubicin was determined to be 54.56%, while nanofibers exhibited 98.74% capacity to encapsulate UCNP-DOX. The release profile of UCNP-DOX from nanofiber formulation ranged from sustained to controlled, with relative enhancement in acidic conditions. The nanofiber demonstrated good mechanical strength, robust swelling, and degradation rate. Biocompatibility tests showed more than 90% cell viability on L929 and NIH/3T3 cell lines with UCNP-DOX@NF/pep nanoformulation. The IC50 values of 2.15 ± 0.54, 2.87 ± 0.67, and 3.42 ± 0.45 μg/mL on MDA-MB-231, 4T1, and MCF-7 cancer cell line, respectively, with a significant cellular uptake, has been reported. The UCNP protruded a ≈62.7°C temperature rise within 5 min of 980 nm laser irradiation and a power density of 0.5 W cm<sup>−2</sup>. The nanoformulation induced reactive oxygen species of 65.67% ± 3.21% and apoptosis by arresting the cell cycle sub-G1 phase. The evaluation conveys the effectiveness of the developed injectable theranostic delivery system in cancer therapy.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 9","pages":"1612-1626"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of injectable upconversion nanoparticle-conjugated doxorubicin theranostics electrospun nanostructure for targeted photochemotherapy in breast cancer\",\"authors\":\"Amreen Khan, Abhishek Tripathi, Mayuri Gandhi, Jayesh Bellare, Rohit Srivastava\",\"doi\":\"10.1002/jbm.a.37713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanotheranostic-based photochemotherapies with targeted drug delivery have considerably surfaced in cancer therapy. In the presented work, polyethyleneimine-coated upconversion nanoparticles were engineered to conjugate covalently with doxorubicin. Upconversion nanoparticles (UCNP)-Doxorubicin (DOX)/synthesized epidermal growth factor receptor-targeting peptide blended with polymer composite was electrospun and formulated as the injectable dosage form. The size of the UCNP and the nanofiber diameter were assessed as 26.75 ± 1.54 and 162 ± 2.82 nm, respectively. The optimized ratio of dopants resulted in UCNP photoluminescence with maximum emission intensity at around 800 nm upon 980 nm excitation wavelength. The paramagnetic nature of UCNPs and amide conjugation with the drug was confirmed analytically. The loading capacity of UCNP for doxorubicin was determined to be 54.56%, while nanofibers exhibited 98.74% capacity to encapsulate UCNP-DOX. The release profile of UCNP-DOX from nanofiber formulation ranged from sustained to controlled, with relative enhancement in acidic conditions. The nanofiber demonstrated good mechanical strength, robust swelling, and degradation rate. Biocompatibility tests showed more than 90% cell viability on L929 and NIH/3T3 cell lines with UCNP-DOX@NF/pep nanoformulation. The IC50 values of 2.15 ± 0.54, 2.87 ± 0.67, and 3.42 ± 0.45 μg/mL on MDA-MB-231, 4T1, and MCF-7 cancer cell line, respectively, with a significant cellular uptake, has been reported. The UCNP protruded a ≈62.7°C temperature rise within 5 min of 980 nm laser irradiation and a power density of 0.5 W cm<sup>−2</sup>. The nanoformulation induced reactive oxygen species of 65.67% ± 3.21% and apoptosis by arresting the cell cycle sub-G1 phase. The evaluation conveys the effectiveness of the developed injectable theranostic delivery system in cancer therapy.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"112 9\",\"pages\":\"1612-1626\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37713\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37713","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of injectable upconversion nanoparticle-conjugated doxorubicin theranostics electrospun nanostructure for targeted photochemotherapy in breast cancer
Nanotheranostic-based photochemotherapies with targeted drug delivery have considerably surfaced in cancer therapy. In the presented work, polyethyleneimine-coated upconversion nanoparticles were engineered to conjugate covalently with doxorubicin. Upconversion nanoparticles (UCNP)-Doxorubicin (DOX)/synthesized epidermal growth factor receptor-targeting peptide blended with polymer composite was electrospun and formulated as the injectable dosage form. The size of the UCNP and the nanofiber diameter were assessed as 26.75 ± 1.54 and 162 ± 2.82 nm, respectively. The optimized ratio of dopants resulted in UCNP photoluminescence with maximum emission intensity at around 800 nm upon 980 nm excitation wavelength. The paramagnetic nature of UCNPs and amide conjugation with the drug was confirmed analytically. The loading capacity of UCNP for doxorubicin was determined to be 54.56%, while nanofibers exhibited 98.74% capacity to encapsulate UCNP-DOX. The release profile of UCNP-DOX from nanofiber formulation ranged from sustained to controlled, with relative enhancement in acidic conditions. The nanofiber demonstrated good mechanical strength, robust swelling, and degradation rate. Biocompatibility tests showed more than 90% cell viability on L929 and NIH/3T3 cell lines with UCNP-DOX@NF/pep nanoformulation. The IC50 values of 2.15 ± 0.54, 2.87 ± 0.67, and 3.42 ± 0.45 μg/mL on MDA-MB-231, 4T1, and MCF-7 cancer cell line, respectively, with a significant cellular uptake, has been reported. The UCNP protruded a ≈62.7°C temperature rise within 5 min of 980 nm laser irradiation and a power density of 0.5 W cm−2. The nanoformulation induced reactive oxygen species of 65.67% ± 3.21% and apoptosis by arresting the cell cycle sub-G1 phase. The evaluation conveys the effectiveness of the developed injectable theranostic delivery system in cancer therapy.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.