Olivia Sablan, Bonne Ford, Emily Gargulinski, Melanie S. Hammer, Giovanna Henery, Shobha Kondragunta, Randall V. Martin, Zoey Rosen, Kellin Slater, Aaron van Donkelaar, Hai Zhang, Amber J. Soja, Sheryl Magzamen, Jeffrey R. Pierce, Emily V. Fischer
{"title":"利用低成本传感器和卫星量化处方火烟雾暴露:堪萨斯州东部的春季燃烧","authors":"Olivia Sablan, Bonne Ford, Emily Gargulinski, Melanie S. Hammer, Giovanna Henery, Shobha Kondragunta, Randall V. Martin, Zoey Rosen, Kellin Slater, Aaron van Donkelaar, Hai Zhang, Amber J. Soja, Sheryl Magzamen, Jeffrey R. Pierce, Emily V. Fischer","doi":"10.1029/2023GH000982","DOIUrl":null,"url":null,"abstract":"<p>Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM<sub>2.5</sub>). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM<sub>2.5</sub> concentrations to the prescribed burning in the FH. To determine PM<sub>2.5</sub> increases from local burning, we used low-cost PM<sub>2.5</sub> sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM<sub>2.5</sub> to increase by 3.0–5.3 μg m<sup>−3</sup> (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM<sub>2.5</sub> compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM<sub>2.5</sub> estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM<sub>2.5</sub> estimates.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000982","citationCount":"0","resultStr":"{\"title\":\"Quantifying Prescribed-Fire Smoke Exposure Using Low-Cost Sensors and Satellites: Springtime Burning in Eastern Kansas\",\"authors\":\"Olivia Sablan, Bonne Ford, Emily Gargulinski, Melanie S. Hammer, Giovanna Henery, Shobha Kondragunta, Randall V. Martin, Zoey Rosen, Kellin Slater, Aaron van Donkelaar, Hai Zhang, Amber J. Soja, Sheryl Magzamen, Jeffrey R. Pierce, Emily V. Fischer\",\"doi\":\"10.1029/2023GH000982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM<sub>2.5</sub>). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM<sub>2.5</sub> concentrations to the prescribed burning in the FH. To determine PM<sub>2.5</sub> increases from local burning, we used low-cost PM<sub>2.5</sub> sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM<sub>2.5</sub> to increase by 3.0–5.3 μg m<sup>−3</sup> (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM<sub>2.5</sub> compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM<sub>2.5</sub> estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM<sub>2.5</sub> estimates.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000982\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000982\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000982","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying Prescribed-Fire Smoke Exposure Using Low-Cost Sensors and Satellites: Springtime Burning in Eastern Kansas
Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0–5.3 μg m−3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.