Yusuf Tansel Ic, Burak Meriç Hamzaoğlu, Mustafa Yurdakul
{"title":"航空工业中稳健的铝材料选择过程:模糊多标准决策的线性离散系统稳定性测试视角","authors":"Yusuf Tansel Ic, Burak Meriç Hamzaoğlu, Mustafa Yurdakul","doi":"10.1007/s13369-024-08911-z","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum parts are used in the aviation industry because of the need for light. However, in addition to lightness, critical parts that must have high strength properties have also been developed. The corrosion resistance, resistance to high temperatures, and workability were investigated in this case. It becomes difficult to choose among many aluminum materials that can be alternatives to each other when these features are included. The developed approach, which considers many of the features listed above and ultimately recommends to the user the most suitable aluminum material for the relevant critical part, will be used in overcoming the difficulties in this process. A material selection model is proposed in this paper for this purpose, and the decision-making model is demonstrated with examples from the aviation industry. Therefore, the developed model, which will enable the selection of the most suitable materials among alternative materials, especially for critical parts in the aviation industry, will guide professionals working in this field. For this purpose, the fuzzy TOPSIS method is used in the study, and suitable alternatives are determined. Finally, a robustness analysis is proposed to determine the most suitable aluminum material for highly uncertain situations. We apply a stability evaluation study based on process control theory in the robustness analysis.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 11","pages":"14989 - 15005"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13369-024-08911-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A Robust Aluminum Material Selection Process in the Aviation Industry: A Linear Discrete System Stability Test Perspective for Fuzzy Multicriteria Decision-Making\",\"authors\":\"Yusuf Tansel Ic, Burak Meriç Hamzaoğlu, Mustafa Yurdakul\",\"doi\":\"10.1007/s13369-024-08911-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminum parts are used in the aviation industry because of the need for light. However, in addition to lightness, critical parts that must have high strength properties have also been developed. The corrosion resistance, resistance to high temperatures, and workability were investigated in this case. It becomes difficult to choose among many aluminum materials that can be alternatives to each other when these features are included. The developed approach, which considers many of the features listed above and ultimately recommends to the user the most suitable aluminum material for the relevant critical part, will be used in overcoming the difficulties in this process. A material selection model is proposed in this paper for this purpose, and the decision-making model is demonstrated with examples from the aviation industry. Therefore, the developed model, which will enable the selection of the most suitable materials among alternative materials, especially for critical parts in the aviation industry, will guide professionals working in this field. For this purpose, the fuzzy TOPSIS method is used in the study, and suitable alternatives are determined. Finally, a robustness analysis is proposed to determine the most suitable aluminum material for highly uncertain situations. We apply a stability evaluation study based on process control theory in the robustness analysis.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"49 11\",\"pages\":\"14989 - 15005\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13369-024-08911-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-08911-z\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08911-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Robust Aluminum Material Selection Process in the Aviation Industry: A Linear Discrete System Stability Test Perspective for Fuzzy Multicriteria Decision-Making
Aluminum parts are used in the aviation industry because of the need for light. However, in addition to lightness, critical parts that must have high strength properties have also been developed. The corrosion resistance, resistance to high temperatures, and workability were investigated in this case. It becomes difficult to choose among many aluminum materials that can be alternatives to each other when these features are included. The developed approach, which considers many of the features listed above and ultimately recommends to the user the most suitable aluminum material for the relevant critical part, will be used in overcoming the difficulties in this process. A material selection model is proposed in this paper for this purpose, and the decision-making model is demonstrated with examples from the aviation industry. Therefore, the developed model, which will enable the selection of the most suitable materials among alternative materials, especially for critical parts in the aviation industry, will guide professionals working in this field. For this purpose, the fuzzy TOPSIS method is used in the study, and suitable alternatives are determined. Finally, a robustness analysis is proposed to determine the most suitable aluminum material for highly uncertain situations. We apply a stability evaluation study based on process control theory in the robustness analysis.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.