{"title":"利用激光粉末床熔融技术制造纯铌:工艺参数和支撑物对成品表面质量的影响","authors":"","doi":"10.1007/s00170-024-13249-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Niobium (Nb) is a transition metal commonly used as an alloying element for increasing strength, toughness, corrosion resistance, and other properties of steel and superalloys. Pure Nb, however, is a very interesting metal for its excellent superconductivity. This makes it suitable for producing superconducting magnets and devices for particle acceleration systems and particle physics research (e.g., superconducting resonant cavities). In this work, the production of Nb by the Laser-Based Powder Bed Fusion (PBF-LB/M, also known as Laser Powder Bed Fusion or LPBF) process was examined. Manufacturing parameters were investigated to achieve additively manufactured parts with a relative density higher than 99.5% and showing a down-skin surface roughness in the range of 20–70 μm, depending on the inclination angle. Studies related to the limiting angle of self-supported Nb parts were also conducted, and innovative non-contact supporting structures were successfully developed. These allowed to creation of parts with very small overhang angles, without compromising the downward-facing surfaces; indeed at the same time, the as-built surface finish was improved.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality\",\"authors\":\"\",\"doi\":\"10.1007/s00170-024-13249-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Niobium (Nb) is a transition metal commonly used as an alloying element for increasing strength, toughness, corrosion resistance, and other properties of steel and superalloys. Pure Nb, however, is a very interesting metal for its excellent superconductivity. This makes it suitable for producing superconducting magnets and devices for particle acceleration systems and particle physics research (e.g., superconducting resonant cavities). In this work, the production of Nb by the Laser-Based Powder Bed Fusion (PBF-LB/M, also known as Laser Powder Bed Fusion or LPBF) process was examined. Manufacturing parameters were investigated to achieve additively manufactured parts with a relative density higher than 99.5% and showing a down-skin surface roughness in the range of 20–70 μm, depending on the inclination angle. Studies related to the limiting angle of self-supported Nb parts were also conducted, and innovative non-contact supporting structures were successfully developed. These allowed to creation of parts with very small overhang angles, without compromising the downward-facing surfaces; indeed at the same time, the as-built surface finish was improved.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13249-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13249-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality
Abstract
Niobium (Nb) is a transition metal commonly used as an alloying element for increasing strength, toughness, corrosion resistance, and other properties of steel and superalloys. Pure Nb, however, is a very interesting metal for its excellent superconductivity. This makes it suitable for producing superconducting magnets and devices for particle acceleration systems and particle physics research (e.g., superconducting resonant cavities). In this work, the production of Nb by the Laser-Based Powder Bed Fusion (PBF-LB/M, also known as Laser Powder Bed Fusion or LPBF) process was examined. Manufacturing parameters were investigated to achieve additively manufactured parts with a relative density higher than 99.5% and showing a down-skin surface roughness in the range of 20–70 μm, depending on the inclination angle. Studies related to the limiting angle of self-supported Nb parts were also conducted, and innovative non-contact supporting structures were successfully developed. These allowed to creation of parts with very small overhang angles, without compromising the downward-facing surfaces; indeed at the same time, the as-built surface finish was improved.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.