Tristan W. Bacha, Francis M. Haas, Isaac M. Nault, Joseph F. Stanzione III
{"title":"改进聚合物冷喷工艺的多用途添加剂","authors":"Tristan W. Bacha, Francis M. Haas, Isaac M. Nault, Joseph F. Stanzione III","doi":"10.1007/s11666-024-01745-z","DOIUrl":null,"url":null,"abstract":"<div><p>Polymers have proven to be challenging to cold spray, particularly with high efficiency and quality when using inexpensive nitrogen (N<sub>2</sub>) and air propellants. Helium (He), when used as a process propellant, can improve spray deposit properties but is often undesirable due to its limited availability and high cost. In this study, additives of multiple particle sizes and materials were mixed with polymer powder in an effort to improve the performance of polymer sprays using mainly N<sub>2</sub> as a process propellant. The effects of hard-phase additives on deposit microstructure were investigated by precise ion beam polishing of deposit cross sections and subsequent electron microscope imaging. Additional metrics including the density and post-spray composition of deposits were investigated to quantify the peening effect and the amount of embedded additive. Additives, regardless of size, were observed to embed in the spray deposits. Additionally, hard-phase additives demonstrated nozzle cleaning properties that continually remove polymer fouling on the nozzle walls. Inversely, sprays with polymer powder and no additives tended to clog the nozzle throat and diverging section because of continual fouling.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 2-3","pages":"609 - 618"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01745-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Multipurpose Additives Toward Improving the Polymer Cold Spray Process\",\"authors\":\"Tristan W. Bacha, Francis M. Haas, Isaac M. Nault, Joseph F. Stanzione III\",\"doi\":\"10.1007/s11666-024-01745-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymers have proven to be challenging to cold spray, particularly with high efficiency and quality when using inexpensive nitrogen (N<sub>2</sub>) and air propellants. Helium (He), when used as a process propellant, can improve spray deposit properties but is often undesirable due to its limited availability and high cost. In this study, additives of multiple particle sizes and materials were mixed with polymer powder in an effort to improve the performance of polymer sprays using mainly N<sub>2</sub> as a process propellant. The effects of hard-phase additives on deposit microstructure were investigated by precise ion beam polishing of deposit cross sections and subsequent electron microscope imaging. Additional metrics including the density and post-spray composition of deposits were investigated to quantify the peening effect and the amount of embedded additive. Additives, regardless of size, were observed to embed in the spray deposits. Additionally, hard-phase additives demonstrated nozzle cleaning properties that continually remove polymer fouling on the nozzle walls. Inversely, sprays with polymer powder and no additives tended to clog the nozzle throat and diverging section because of continual fouling.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 2-3\",\"pages\":\"609 - 618\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11666-024-01745-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01745-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01745-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Multipurpose Additives Toward Improving the Polymer Cold Spray Process
Polymers have proven to be challenging to cold spray, particularly with high efficiency and quality when using inexpensive nitrogen (N2) and air propellants. Helium (He), when used as a process propellant, can improve spray deposit properties but is often undesirable due to its limited availability and high cost. In this study, additives of multiple particle sizes and materials were mixed with polymer powder in an effort to improve the performance of polymer sprays using mainly N2 as a process propellant. The effects of hard-phase additives on deposit microstructure were investigated by precise ion beam polishing of deposit cross sections and subsequent electron microscope imaging. Additional metrics including the density and post-spray composition of deposits were investigated to quantify the peening effect and the amount of embedded additive. Additives, regardless of size, were observed to embed in the spray deposits. Additionally, hard-phase additives demonstrated nozzle cleaning properties that continually remove polymer fouling on the nozzle walls. Inversely, sprays with polymer powder and no additives tended to clog the nozzle throat and diverging section because of continual fouling.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.