带有聚脲金属层压板面片的辅助蜂窝夹层板的振动和阻尼特性

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Mechanics of Materials and Structures Pub Date : 2024-03-27 DOI:10.2140/jomms.2024.19.435
Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan
{"title":"带有聚脲金属层压板面片的辅助蜂窝夹层板的振动和阻尼特性","authors":"Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan","doi":"10.2140/jomms.2024.19.435","DOIUrl":null,"url":null,"abstract":"<p>All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>3</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and damping characteristics of auxetic honeycomb sandwich panels with polyurea-metal laminate face sheets\",\"authors\":\"Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan\",\"doi\":\"10.2140/jomms.2024.19.435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>3</mn></mrow>\\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2024.19.435\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.435","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全金属辅助蜂窝夹层板通常具有超轻和坚固的特点,但减振性能较差。本文介绍了带有聚脲金属层压板(PML)的面内辅助蜂窝夹层板(AHSP),并对其振动和阻尼特性进行了研究。利用 ABAQUS 建立了 PML 面板辅助蜂窝夹层结构的阻尼特性分析模型,并对模型进行了验证。通过有限元(FE)方法模拟了频率/时间响应曲线、固有频率、模态振型和阻尼损失因子,然后与没有聚脲层的夹层板进行了比较。考虑到聚脲的固有频率和阻尼行为,为了研究潜在的增强过程和振动阻尼特性,提出了一种有限元-模态应变能(FE-MSE)综合方法。由于聚脲层的粘弹性能量消耗,PML 面板的阻尼显著增加。通过合理调整聚脲层的厚度和分布,可以进一步提高夹芯板的被动阻尼能力。通过增加聚脲层的厚度,成功地提高了 AHSP 的频率和阻尼损失因子。对称 PML-A 层压板的减振效果优于非对称结构,在厚度比为 33 的情况下,阻尼损失因子可从 29% 增长到 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibration and damping characteristics of auxetic honeycomb sandwich panels with polyurea-metal laminate face sheets

All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of 3 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
期刊最新文献
Comparative analysis of axial and radial mechanical properties of cortical bone using nanoindentation Frictional receding contact problem of a functionally graded orthotropic layer / orthotropic interlayer / isotropic half plane system Sound radiation and wave propagation of functionally graded carbon nanotube reinforced composite plates Dynamic response of an interlocking plastic-block wall with opening Microstructure evolution mechanism of high entropy alloys under impact loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1