Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan
{"title":"带有聚脲金属层压板面片的辅助蜂窝夹层板的振动和阻尼特性","authors":"Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan","doi":"10.2140/jomms.2024.19.435","DOIUrl":null,"url":null,"abstract":"<p>All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>3</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and damping characteristics of auxetic honeycomb sandwich panels with polyurea-metal laminate face sheets\",\"authors\":\"Qiang He, Jiamei Zhu, Lizheng Li, Yun Guo, Dejun Yan\",\"doi\":\"10.2140/jomms.2024.19.435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>3</mn></mrow>\\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2024.19.435\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.435","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Vibration and damping characteristics of auxetic honeycomb sandwich panels with polyurea-metal laminate face sheets
All-metal sandwich panels of auxetic honeycomb are usually ultralight and robust but have poor vibration damping. The in-plane auxetic honeycomb sandwich panels (AHSPs) with polyurea-metal laminate (PML) were presented, and its vibration and damping characteristics were studied. The damping characteristic analysis model of the auxetic honeycomb sandwich structure of the PML panel was created by ABAQUS and the model was verified. The frequency/time response curve, natural frequency, mode shapes, and damping loss factor were simulated by the finite element (FE) method, which was then compared with the sandwich plate without a polyurea layer. To investigate potential enhancement processes and examine vibration-damping characteristics, a finite element-modal strain energy (FE-MSE) integrated approach was put forward, taking into account the natural frequency and damping behavior of polyurea. The damping of the PML panel significantly increased due to the viscoelastic energy consumption of the polyurea layer. By reasonably adjusting the thickness and distribution of the polyurea layer, the passive damping ability of sandwich panels can be further enhanced. The frequency and damping loss factor of the AHSPs were able to be successfully improved by raising the thickness of the polyurea layer. The symmetric PML-A laminate was better than the asymmetric structure in vibration reduction, and the damping loss factor can grow from 29% to 40%, with a thickness ratio of .
期刊介绍:
Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.