{"title":"基于 Ag2O 的银电极和电子注入层的低温蒸发及其在有机发光二极管中的应用研究","authors":"Yachen Xu, Jialu Gu, Lulu Zhou, Bingjia Zhao, Yangyang Zhu, Wei Shi, Bin Wei","doi":"10.1088/1361-6641/ad2d63","DOIUrl":null,"url":null,"abstract":"Organic light-emitting diodes (OLEDs) have become one of the mainstream lighting and display technologies. The vacuum thermal evaporation is the most widely adopted method for the preparation of organic and metal materials of OLEDs. The thermal deposition of the commonly used silver (Ag) and aluminum (Al) electrodes requires high temperature and long time, which greatly increases the cost of the fabricating process. Therefore, we selected silver oxide (Ag<sub>2</sub>O) powder instead of Ag pellets as the precursor for evaporating Ag electrodes. Compared to Ag pellets and Al wires, Ag<sub>2</sub>O-based Ag electrode need lower evaporation temperature and shorter preheating time. In addition, the agglomeration phenomenon on the surface of the Ag<sub>2</sub>O-based Ag film is prevented, which also increases the carrier concentration of Ag electrode. Moreover, by doping bathophenanthroline (Bphen) in Ag<sub>2</sub>O powders, the phenanthroline-metal (Bphen-Ag) complexes with higher electron mobility and stronger electron injecting ability can be achieved. We applied Ag<sub>2</sub>O-based Ag electrode and 10 wt.% Ag<sub>2</sub>O-based Ag:Bphen as electron injection layer to achieve high-efficiency red phosphorescent inverted OLEDs, with the maximum current efficiency, external quantum efficiency, and power efficiency of 17.79 cd A<sup>−1</sup>, 20.71%, and 12.14 lm W<sup>−1</sup>, respectively. This method provides a new strategy for preparing highly efficient inverted red OLED devices.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on low-temperature evaporation of Ag2O-based Ag electrode and electron injection layer and their application in OLEDs\",\"authors\":\"Yachen Xu, Jialu Gu, Lulu Zhou, Bingjia Zhao, Yangyang Zhu, Wei Shi, Bin Wei\",\"doi\":\"10.1088/1361-6641/ad2d63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic light-emitting diodes (OLEDs) have become one of the mainstream lighting and display technologies. The vacuum thermal evaporation is the most widely adopted method for the preparation of organic and metal materials of OLEDs. The thermal deposition of the commonly used silver (Ag) and aluminum (Al) electrodes requires high temperature and long time, which greatly increases the cost of the fabricating process. Therefore, we selected silver oxide (Ag<sub>2</sub>O) powder instead of Ag pellets as the precursor for evaporating Ag electrodes. Compared to Ag pellets and Al wires, Ag<sub>2</sub>O-based Ag electrode need lower evaporation temperature and shorter preheating time. In addition, the agglomeration phenomenon on the surface of the Ag<sub>2</sub>O-based Ag film is prevented, which also increases the carrier concentration of Ag electrode. Moreover, by doping bathophenanthroline (Bphen) in Ag<sub>2</sub>O powders, the phenanthroline-metal (Bphen-Ag) complexes with higher electron mobility and stronger electron injecting ability can be achieved. We applied Ag<sub>2</sub>O-based Ag electrode and 10 wt.% Ag<sub>2</sub>O-based Ag:Bphen as electron injection layer to achieve high-efficiency red phosphorescent inverted OLEDs, with the maximum current efficiency, external quantum efficiency, and power efficiency of 17.79 cd A<sup>−1</sup>, 20.71%, and 12.14 lm W<sup>−1</sup>, respectively. This method provides a new strategy for preparing highly efficient inverted red OLED devices.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad2d63\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2d63","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Study on low-temperature evaporation of Ag2O-based Ag electrode and electron injection layer and their application in OLEDs
Organic light-emitting diodes (OLEDs) have become one of the mainstream lighting and display technologies. The vacuum thermal evaporation is the most widely adopted method for the preparation of organic and metal materials of OLEDs. The thermal deposition of the commonly used silver (Ag) and aluminum (Al) electrodes requires high temperature and long time, which greatly increases the cost of the fabricating process. Therefore, we selected silver oxide (Ag2O) powder instead of Ag pellets as the precursor for evaporating Ag electrodes. Compared to Ag pellets and Al wires, Ag2O-based Ag electrode need lower evaporation temperature and shorter preheating time. In addition, the agglomeration phenomenon on the surface of the Ag2O-based Ag film is prevented, which also increases the carrier concentration of Ag electrode. Moreover, by doping bathophenanthroline (Bphen) in Ag2O powders, the phenanthroline-metal (Bphen-Ag) complexes with higher electron mobility and stronger electron injecting ability can be achieved. We applied Ag2O-based Ag electrode and 10 wt.% Ag2O-based Ag:Bphen as electron injection layer to achieve high-efficiency red phosphorescent inverted OLEDs, with the maximum current efficiency, external quantum efficiency, and power efficiency of 17.79 cd A−1, 20.71%, and 12.14 lm W−1, respectively. This method provides a new strategy for preparing highly efficient inverted red OLED devices.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.