高强度声束

IF 0.8 4区 地球科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radiophysics and Quantum Electronics Pub Date : 2024-03-27 DOI:10.1007/s11141-024-10298-8
O. V. Rudenko
{"title":"高强度声束","authors":"O. V. Rudenko","doi":"10.1007/s11141-024-10298-8","DOIUrl":null,"url":null,"abstract":"<p>We present a brief overview of the theory of high-intensity nonlinear diffracting beams. Characteristic distortions of the profiles of acoustic waves, which are observed during the wave propagation, are described. The following features are pointed out. First, the positive and negative half periods of the original harmonic signal are differently distorted. The positive-pressure phase duration is shortened and its “amplitude” is increased. On the contrary, the region of negative pressure is somewhat extended and reduced in “amplitude.” Second, the profiles are shifted to the region of negative values of the “accompanying” time, i.e., the diffraction of a convex beam leads to a slight increase in its propagation velocity. In addition, the positive pressure in some range of distances may exceed the initial value. Low-frequency geometric dispersion leads to differentiation of the weak signal profile in the focal region and in the far zone, which leads to the disappearance of unipolar video pulses. A stationary wave composed of sections of a parabolic shape can be formed in the waist. The limiting values of acoustic pressure and wave intensity in the focus are estimated. Approximate mathematical methods and the models used in the calculation of the wave profiles are described.</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"66 5-6","pages":"321 - 332"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Intensity Acoustic Beams\",\"authors\":\"O. V. Rudenko\",\"doi\":\"10.1007/s11141-024-10298-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a brief overview of the theory of high-intensity nonlinear diffracting beams. Characteristic distortions of the profiles of acoustic waves, which are observed during the wave propagation, are described. The following features are pointed out. First, the positive and negative half periods of the original harmonic signal are differently distorted. The positive-pressure phase duration is shortened and its “amplitude” is increased. On the contrary, the region of negative pressure is somewhat extended and reduced in “amplitude.” Second, the profiles are shifted to the region of negative values of the “accompanying” time, i.e., the diffraction of a convex beam leads to a slight increase in its propagation velocity. In addition, the positive pressure in some range of distances may exceed the initial value. Low-frequency geometric dispersion leads to differentiation of the weak signal profile in the focal region and in the far zone, which leads to the disappearance of unipolar video pulses. A stationary wave composed of sections of a parabolic shape can be formed in the waist. The limiting values of acoustic pressure and wave intensity in the focus are estimated. Approximate mathematical methods and the models used in the calculation of the wave profiles are described.</p>\",\"PeriodicalId\":748,\"journal\":{\"name\":\"Radiophysics and Quantum Electronics\",\"volume\":\"66 5-6\",\"pages\":\"321 - 332\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiophysics and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11141-024-10298-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-024-10298-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们简要介绍了高强度非线性衍射光束理论。描述了在声波传播过程中观察到的声波剖面的特征性扭曲。指出了以下特征。首先,原始谐波信号的正负半周期发生了不同程度的扭曲。正压相位持续时间缩短,"振幅 "增大。相反,负压区域有所延长,"振幅 "减小。其次,剖面向 "伴随 "时间的负值区域移动,即凸光束的衍射导致其传播速度略有增加。此外,某些距离范围内的正压力可能会超过初始值。低频几何色散会导致焦点区域和远区的微弱信号轮廓出现差异,从而导致单极视频脉冲消失。在腰部可形成由抛物线形状截面组成的静止波。对焦点区域声压和波强的极限值进行了估算。介绍了计算波形所使用的近似数学方法和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Intensity Acoustic Beams

We present a brief overview of the theory of high-intensity nonlinear diffracting beams. Characteristic distortions of the profiles of acoustic waves, which are observed during the wave propagation, are described. The following features are pointed out. First, the positive and negative half periods of the original harmonic signal are differently distorted. The positive-pressure phase duration is shortened and its “amplitude” is increased. On the contrary, the region of negative pressure is somewhat extended and reduced in “amplitude.” Second, the profiles are shifted to the region of negative values of the “accompanying” time, i.e., the diffraction of a convex beam leads to a slight increase in its propagation velocity. In addition, the positive pressure in some range of distances may exceed the initial value. Low-frequency geometric dispersion leads to differentiation of the weak signal profile in the focal region and in the far zone, which leads to the disappearance of unipolar video pulses. A stationary wave composed of sections of a parabolic shape can be formed in the waist. The limiting values of acoustic pressure and wave intensity in the focus are estimated. Approximate mathematical methods and the models used in the calculation of the wave profiles are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiophysics and Quantum Electronics
Radiophysics and Quantum Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
1.10
自引率
12.50%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as: Radio astronomy; Plasma astrophysics; Ionospheric, atmospheric and oceanic physics; Radiowave propagation; Quantum radiophysics; Pphysics of oscillations and waves; Physics of plasmas; Statistical radiophysics; Electrodynamics; Vacuum and plasma electronics; Acoustics; Solid-state electronics. Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April. All articles are peer-reviewed.
期刊最新文献
Scalable Quantum Processor Based on Superconducting Fluxonium Qubits Integrated Circuits for Quantum Machine Learning Based on Superconducting Artificial Atoms and Methods of Their Control Waveguide Integrated Superconducting Single-Photon Detector For Photonic And Ion Quantum Processors And Neuromorphic Computing The Influence of Cyclic Deformation on Elastic and Acoustic Properties of Chromium-Nickel Steels Development of a Microwave Diagnostic Method for Measurements of the Free-Surface Velocity in the Plane-Wave Experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1