Mattia Libralato, Ioannis Argyriou, Dan Dicken, Macarena García Marín, Pierre Guillard, Dean C. Hines, Patrick J. Kavanagh, Sarah Kendrew, David R. Law, Alberto Noriega-Crespo, Javier Álvarez-Márquez
{"title":"利用 JWST/MIRI 成像仪进行高精度天体测量和光度测量","authors":"Mattia Libralato, Ioannis Argyriou, Dan Dicken, Macarena García Marín, Pierre Guillard, Dean C. Hines, Patrick J. Kavanagh, Sarah Kendrew, David R. Law, Alberto Noriega-Crespo, Javier Álvarez-Márquez","doi":"10.1088/1538-3873/ad2551","DOIUrl":null,"url":null,"abstract":"Astrometry is one of the main pillars of astronomy, and one of its oldest branches. Over the years, an increasing number of astrometric works by means of Hubble Space Telescope (HST) data have revolutionized our understanding of various phenomena. With the launch of JWST, it becomes almost instinctive to want to replicate or improve these results with data taken with the newest, state-of-the-art, space-based telescope. In this regard, the initial focus of the community has been on the Near-Infrared detectors on board of JWST because of their high spatial resolution. This paper begins the effort to capture and apply what has been learned from HST to the Mid-InfraRed Instrument (MIRI) of JWST by developing the tools to obtain high-precision astrometry and photometry with its imager. We describe in detail how to create accurate effective point-spread-function (ePSF) models and geometric-distortion corrections, analyze their temporal stability, and test their quality to the extent of what is currently possible with the available data in the JWST MAST archive. We show that careful data reduction provides deep insight on the performance and intricacies of the MIRI imager, and of JWST in general. In an effort to help the community devise new observing programs, we make our ePSF models and geometric-distortion corrections publicly available.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"40 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-precision Astrometry and Photometry with the JWST/MIRI Imager\",\"authors\":\"Mattia Libralato, Ioannis Argyriou, Dan Dicken, Macarena García Marín, Pierre Guillard, Dean C. Hines, Patrick J. Kavanagh, Sarah Kendrew, David R. Law, Alberto Noriega-Crespo, Javier Álvarez-Márquez\",\"doi\":\"10.1088/1538-3873/ad2551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astrometry is one of the main pillars of astronomy, and one of its oldest branches. Over the years, an increasing number of astrometric works by means of Hubble Space Telescope (HST) data have revolutionized our understanding of various phenomena. With the launch of JWST, it becomes almost instinctive to want to replicate or improve these results with data taken with the newest, state-of-the-art, space-based telescope. In this regard, the initial focus of the community has been on the Near-Infrared detectors on board of JWST because of their high spatial resolution. This paper begins the effort to capture and apply what has been learned from HST to the Mid-InfraRed Instrument (MIRI) of JWST by developing the tools to obtain high-precision astrometry and photometry with its imager. We describe in detail how to create accurate effective point-spread-function (ePSF) models and geometric-distortion corrections, analyze their temporal stability, and test their quality to the extent of what is currently possible with the available data in the JWST MAST archive. We show that careful data reduction provides deep insight on the performance and intricacies of the MIRI imager, and of JWST in general. In an effort to help the community devise new observing programs, we make our ePSF models and geometric-distortion corrections publicly available.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/ad2551\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad2551","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
High-precision Astrometry and Photometry with the JWST/MIRI Imager
Astrometry is one of the main pillars of astronomy, and one of its oldest branches. Over the years, an increasing number of astrometric works by means of Hubble Space Telescope (HST) data have revolutionized our understanding of various phenomena. With the launch of JWST, it becomes almost instinctive to want to replicate or improve these results with data taken with the newest, state-of-the-art, space-based telescope. In this regard, the initial focus of the community has been on the Near-Infrared detectors on board of JWST because of their high spatial resolution. This paper begins the effort to capture and apply what has been learned from HST to the Mid-InfraRed Instrument (MIRI) of JWST by developing the tools to obtain high-precision astrometry and photometry with its imager. We describe in detail how to create accurate effective point-spread-function (ePSF) models and geometric-distortion corrections, analyze their temporal stability, and test their quality to the extent of what is currently possible with the available data in the JWST MAST archive. We show that careful data reduction provides deep insight on the performance and intricacies of the MIRI imager, and of JWST in general. In an effort to help the community devise new observing programs, we make our ePSF models and geometric-distortion corrections publicly available.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.