基于多源数据增强的新型少数样本故障诊断方法

IF 3.4 Q1 ENGINEERING, MECHANICAL 国际机械系统动力学学报(英文) Pub Date : 2024-03-24 DOI:10.1002/msd2.12100
Yiming Guo, Shida Song, Jing Huang
{"title":"基于多源数据增强的新型少数样本故障诊断方法","authors":"Yiming Guo,&nbsp;Shida Song,&nbsp;Jing Huang","doi":"10.1002/msd2.12100","DOIUrl":null,"url":null,"abstract":"<p>Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems. However, the complex structure of the collected multisource data and scarcity of fault samples make it difficult to accurately identify multiple fault conditions. To address this challenge, this paper proposes a novel deep-learning model for multisource data augmentation and small sample fault diagnosis. The raw multisource data are first converted into two-dimensional images using the Gramian Angular Field, and a generator is built to transform random noise into images through transposed convolution operations. Then, two discriminators are constructed to evaluate the authenticity of input images and the fault diagnosis ability. The Vision Transformer network is built to diagnose faults and obtain the classification error for the discriminator. Furthermore, a global optimization strategy is designed to upgrade parameters in the model. The discriminators and generator compete with each other until Nash equilibrium is achieved. A real-world multistep forging machine is adopted to compare and validate the performance of different methods. The experimental results indicate that the proposed method has multisource data augmentation and minority sample fault diagnosis capabilities. Compared with other state-of-the-art models, the proposed approach has better fault diagnosis accuracy in various scenarios.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"4 1","pages":"88-98"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12100","citationCount":"0","resultStr":"{\"title\":\"A novel minority sample fault diagnosis method based on multisource data enhancement\",\"authors\":\"Yiming Guo,&nbsp;Shida Song,&nbsp;Jing Huang\",\"doi\":\"10.1002/msd2.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems. However, the complex structure of the collected multisource data and scarcity of fault samples make it difficult to accurately identify multiple fault conditions. To address this challenge, this paper proposes a novel deep-learning model for multisource data augmentation and small sample fault diagnosis. The raw multisource data are first converted into two-dimensional images using the Gramian Angular Field, and a generator is built to transform random noise into images through transposed convolution operations. Then, two discriminators are constructed to evaluate the authenticity of input images and the fault diagnosis ability. The Vision Transformer network is built to diagnose faults and obtain the classification error for the discriminator. Furthermore, a global optimization strategy is designed to upgrade parameters in the model. The discriminators and generator compete with each other until Nash equilibrium is achieved. A real-world multistep forging machine is adopted to compare and validate the performance of different methods. The experimental results indicate that the proposed method has multisource data augmentation and minority sample fault diagnosis capabilities. Compared with other state-of-the-art models, the proposed approach has better fault diagnosis accuracy in various scenarios.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"4 1\",\"pages\":\"88-98\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

有效的故障诊断对复杂制造系统的安全性和成本有着至关重要的影响。然而,收集到的多源数据结构复杂,故障样本稀少,因此很难准确识别多种故障情况。为应对这一挑战,本文提出了一种新型深度学习模型,用于多源数据增强和小样本故障诊断。首先利用格拉米安角场将原始多源数据转换为二维图像,并建立一个生成器,通过转置卷积操作将随机噪声转换为图像。然后,构建两个判别器来评估输入图像的真实性和故障诊断能力。建立视觉变换器网络来诊断故障,并获得判别器的分类误差。此外,还设计了一种全局优化策略来升级模型中的参数。鉴别器和发生器相互竞争,直至达到纳什平衡。实验采用了真实世界中的多步锻造机来比较和验证不同方法的性能。实验结果表明,所提出的方法具有多源数据增强和少数样本故障诊断能力。与其他最先进的模型相比,所提出的方法在各种情况下都具有更高的故障诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel minority sample fault diagnosis method based on multisource data enhancement

Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems. However, the complex structure of the collected multisource data and scarcity of fault samples make it difficult to accurately identify multiple fault conditions. To address this challenge, this paper proposes a novel deep-learning model for multisource data augmentation and small sample fault diagnosis. The raw multisource data are first converted into two-dimensional images using the Gramian Angular Field, and a generator is built to transform random noise into images through transposed convolution operations. Then, two discriminators are constructed to evaluate the authenticity of input images and the fault diagnosis ability. The Vision Transformer network is built to diagnose faults and obtain the classification error for the discriminator. Furthermore, a global optimization strategy is designed to upgrade parameters in the model. The discriminators and generator compete with each other until Nash equilibrium is achieved. A real-world multistep forging machine is adopted to compare and validate the performance of different methods. The experimental results indicate that the proposed method has multisource data augmentation and minority sample fault diagnosis capabilities. Compared with other state-of-the-art models, the proposed approach has better fault diagnosis accuracy in various scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 4, Number 3, September 2024 Design of bionic water jet thruster with double-chamber driven by electromagnetic force A data-assisted physics-informed neural network (DA-PINN) for fretting fatigue lifetime prediction Comparison of the performance and dynamics of the asymmetric single-sided and symmetric double-sided vibro-impact nonlinear energy sinks with optimized designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1