参数盲解卷的最小优化广义变分框架

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-05 DOI:10.1088/1361-6420/ad2c30
Qichao Cao, Deren Han, Xiangfeng Wang, Wenxing Zhang
{"title":"参数盲解卷的最小优化广义变分框架","authors":"Qichao Cao, Deren Han, Xiangfeng Wang, Wenxing Zhang","doi":"10.1088/1361-6420/ad2c30","DOIUrl":null,"url":null,"abstract":"Blind deconvolution (BD), which aims to separate unknown convolved signals, is a fundamental problem in signal processing. Due to the ill-posedness and underdetermination of the convolution system, it is a challenging nonlinear inverse problem. This paper is devoted to the algorithmic studies of parametric BD, which is typically applied to recover images from <italic toggle=\"yes\">ad hoc</italic> optical modalities. We propose a generalized variational framework for parametric BD with various priors and potential functions. By using the conjugate theory in convex analysis, the framework can be cast into a nonlinear saddle point problem. We employ the recent advances in minimax optimization to solve the parametric BD by the nonlinear primal-dual hybrid gradient method, with all subproblems admitting closed-form solutions. Numerical simulations on synthetic and real datasets demonstrate the compelling performance of the minimax optimization approach for solving parametric BD.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized variational framework with minimax optimization for parametric blind deconvolution\",\"authors\":\"Qichao Cao, Deren Han, Xiangfeng Wang, Wenxing Zhang\",\"doi\":\"10.1088/1361-6420/ad2c30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind deconvolution (BD), which aims to separate unknown convolved signals, is a fundamental problem in signal processing. Due to the ill-posedness and underdetermination of the convolution system, it is a challenging nonlinear inverse problem. This paper is devoted to the algorithmic studies of parametric BD, which is typically applied to recover images from <italic toggle=\\\"yes\\\">ad hoc</italic> optical modalities. We propose a generalized variational framework for parametric BD with various priors and potential functions. By using the conjugate theory in convex analysis, the framework can be cast into a nonlinear saddle point problem. We employ the recent advances in minimax optimization to solve the parametric BD by the nonlinear primal-dual hybrid gradient method, with all subproblems admitting closed-form solutions. Numerical simulations on synthetic and real datasets demonstrate the compelling performance of the minimax optimization approach for solving parametric BD.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad2c30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2c30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

盲解卷积(BD)旨在分离未知的卷积信号,是信号处理中的一个基本问题。由于卷积系统的非拟合性和欠确定性,这是一个具有挑战性的非线性逆问题。本文致力于参数 BD 的算法研究,该算法通常用于从特设光学模态中恢复图像。我们为参数 BD 提出了一个广义变分框架,其中包含各种前验和势函数。通过使用凸分析中的共轭理论,可以将该框架转化为非线性鞍点问题。我们利用最小最优化的最新进展,通过非线性原始-双重混合梯度法求解参数 BD,所有子问题都有闭式解。在合成数据集和真实数据集上进行的数值模拟证明了最小最优化方法在解决参数 BD 方面的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized variational framework with minimax optimization for parametric blind deconvolution
Blind deconvolution (BD), which aims to separate unknown convolved signals, is a fundamental problem in signal processing. Due to the ill-posedness and underdetermination of the convolution system, it is a challenging nonlinear inverse problem. This paper is devoted to the algorithmic studies of parametric BD, which is typically applied to recover images from ad hoc optical modalities. We propose a generalized variational framework for parametric BD with various priors and potential functions. By using the conjugate theory in convex analysis, the framework can be cast into a nonlinear saddle point problem. We employ the recent advances in minimax optimization to solve the parametric BD by the nonlinear primal-dual hybrid gradient method, with all subproblems admitting closed-form solutions. Numerical simulations on synthetic and real datasets demonstrate the compelling performance of the minimax optimization approach for solving parametric BD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1