CUQIpy:II.用 Python 对基于 PDE 的逆问题进行计算不确定性量化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-04 DOI:10.1088/1361-6420/ad22e8
Amal M A Alghamdi, Nicolai A B Riis, Babak M Afkham, Felipe Uribe, Silja L Christensen, Per Christian Hansen, Jakob S Jørgensen
{"title":"CUQIpy:II.用 Python 对基于 PDE 的逆问题进行计算不确定性量化","authors":"Amal M A Alghamdi, Nicolai A B Riis, Babak M Afkham, Felipe Uribe, Silja L Christensen, Per Christian Hansen, Jakob S Jørgensen","doi":"10.1088/1361-6420/ad22e8","DOIUrl":null,"url":null,"abstract":"Inverse problems, particularly those governed by Partial Differential Equations (PDEs), are prevalent in various scientific and engineering applications, and uncertainty quantification (UQ) of solutions to these problems is essential for informed decision-making. This second part of a two-paper series builds upon the foundation set by the first part, which introduced <sans-serif>CUQIpy</sans-serif>, a Python software package for computational UQ in inverse problems using a Bayesian framework. In this paper, we extend <sans-serif>CUQIpy</sans-serif>’s capabilities to solve PDE-based Bayesian inverse problems through a general framework that allows the integration of PDEs in <sans-serif>CUQIpy</sans-serif>, whether expressed natively or using third-party libraries such as <sans-serif>FEniCS</sans-serif>. <sans-serif>CUQIpy</sans-serif> offers concise syntax that closely matches mathematical expressions, streamlining the modeling process and enhancing the user experience. The versatility and applicability of <sans-serif>CUQIpy</sans-serif> to PDE-based Bayesian inverse problems are demonstrated on examples covering parabolic, elliptic and hyperbolic PDEs. This includes problems involving the heat and Poisson equations and application case studies in electrical impedance tomography and photo-acoustic tomography, showcasing the software’s efficiency, consistency, and intuitive interface. This comprehensive approach to UQ in PDE-based inverse problems provides accessibility for non-experts and advanced features for experts.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CUQIpy: II. Computational uncertainty quantification for PDE-based inverse problems in Python\",\"authors\":\"Amal M A Alghamdi, Nicolai A B Riis, Babak M Afkham, Felipe Uribe, Silja L Christensen, Per Christian Hansen, Jakob S Jørgensen\",\"doi\":\"10.1088/1361-6420/ad22e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse problems, particularly those governed by Partial Differential Equations (PDEs), are prevalent in various scientific and engineering applications, and uncertainty quantification (UQ) of solutions to these problems is essential for informed decision-making. This second part of a two-paper series builds upon the foundation set by the first part, which introduced <sans-serif>CUQIpy</sans-serif>, a Python software package for computational UQ in inverse problems using a Bayesian framework. In this paper, we extend <sans-serif>CUQIpy</sans-serif>’s capabilities to solve PDE-based Bayesian inverse problems through a general framework that allows the integration of PDEs in <sans-serif>CUQIpy</sans-serif>, whether expressed natively or using third-party libraries such as <sans-serif>FEniCS</sans-serif>. <sans-serif>CUQIpy</sans-serif> offers concise syntax that closely matches mathematical expressions, streamlining the modeling process and enhancing the user experience. The versatility and applicability of <sans-serif>CUQIpy</sans-serif> to PDE-based Bayesian inverse problems are demonstrated on examples covering parabolic, elliptic and hyperbolic PDEs. This includes problems involving the heat and Poisson equations and application case studies in electrical impedance tomography and photo-acoustic tomography, showcasing the software’s efficiency, consistency, and intuitive interface. This comprehensive approach to UQ in PDE-based inverse problems provides accessibility for non-experts and advanced features for experts.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad22e8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad22e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

逆问题,尤其是由偏微分方程(PDE)控制的逆问题,在各种科学和工程应用中十分普遍,而这些问题的解决方案的不确定性量化(UQ)对于明智决策至关重要。本文是两篇系列论文的第二部分,建立在第一部分所奠定的基础之上。第一部分介绍了 CUQIpy,这是一个使用贝叶斯框架计算逆问题不确定性量化的 Python 软件包。在本文中,我们通过一个通用框架扩展了 CUQIpy 的功能,使其能够解决基于 PDE 的贝叶斯逆问题,该框架允许在 CUQIpy 中集成 PDE,无论是本机表达还是使用第三方库(如 FEniCS)表达。CUQIpy 提供与数学表达式密切匹配的简洁语法,简化了建模过程并增强了用户体验。CUQIpy 在基于 PDE 的贝叶斯逆问题上的多功能性和适用性在抛物线、椭圆和双曲 PDE 的示例中得到了证明。其中包括涉及热方程和泊松方程的问题,以及电阻抗层析成像和光声学层析成像的应用案例研究,展示了该软件的效率、一致性和直观界面。这种基于 PDE 逆问题的 UQ 综合方法为非专业人员提供了易用性,为专家提供了高级功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUQIpy: II. Computational uncertainty quantification for PDE-based inverse problems in Python
Inverse problems, particularly those governed by Partial Differential Equations (PDEs), are prevalent in various scientific and engineering applications, and uncertainty quantification (UQ) of solutions to these problems is essential for informed decision-making. This second part of a two-paper series builds upon the foundation set by the first part, which introduced CUQIpy, a Python software package for computational UQ in inverse problems using a Bayesian framework. In this paper, we extend CUQIpy’s capabilities to solve PDE-based Bayesian inverse problems through a general framework that allows the integration of PDEs in CUQIpy, whether expressed natively or using third-party libraries such as FEniCS. CUQIpy offers concise syntax that closely matches mathematical expressions, streamlining the modeling process and enhancing the user experience. The versatility and applicability of CUQIpy to PDE-based Bayesian inverse problems are demonstrated on examples covering parabolic, elliptic and hyperbolic PDEs. This includes problems involving the heat and Poisson equations and application case studies in electrical impedance tomography and photo-acoustic tomography, showcasing the software’s efficiency, consistency, and intuitive interface. This comprehensive approach to UQ in PDE-based inverse problems provides accessibility for non-experts and advanced features for experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1