COVID-19 风险因素的空间分析:孟加拉国案例研究

IF 2.2 3区 环境科学与生态学 Q2 BIOLOGY Aerobiologia Pub Date : 2024-03-27 DOI:10.1007/s10453-024-09815-z
Sefat-E- Barket, Md. Rezaul Karim
{"title":"COVID-19 风险因素的空间分析:孟加拉国案例研究","authors":"Sefat-E- Barket,&nbsp;Md. Rezaul Karim","doi":"10.1007/s10453-024-09815-z","DOIUrl":null,"url":null,"abstract":"<div><p>In 2019, the world grappled with an unexpected and severe global health crisis—the Coronavirus disease (COVID-19) outbreak, which significantly impacted various aspects of human life. This case study, focusing on Bangladesh, aimed to uncover the complex spatial patterns and potential risk factors influencing the virus’s uneven spread across 64 districts. To analyze spatial patterns, two techniques, namely Moran <i>I</i> and Geary <i>C</i>, were employed to study spatial autocorrelation. Hotspots and coldspots were identified using local Moran <i>I</i>, while spatial hotspots were pinpointed using local Getis Ord <i>G</i>. Exploring spatial heterogeneity involved implementing two non-spatial models (Poisson–Gamma and Poisson-Lognormal) and three spatial models (Conditional Autoregressive model, Convolution model, and Leroux model) through Gibbs sampling. The Leroux model emerged as the optimal choice, meeting criteria based on the lowest values of deviance information criterion and Watanabe–Akaike information criterion. Regression analysis revealed that factors such as humidity, population density, and urbanization were associated with an increase in COVID-19 cases, while the aging index appeared to hinder the virus’s spread. The research outcomes provide a comprehensive framework adaptable to the evolving nature of COVID-19 in Bangladesh. It categorizes influential factors into distinct clusters, enabling government agencies, policymakers, and healthcare professionals to make informed decisions for controlling the pandemic and addressing future infectious diseases.</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"40 2","pages":"247 - 269"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial analysis of COVID-19 risk factors: a case study in Bangladesh\",\"authors\":\"Sefat-E- Barket,&nbsp;Md. Rezaul Karim\",\"doi\":\"10.1007/s10453-024-09815-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2019, the world grappled with an unexpected and severe global health crisis—the Coronavirus disease (COVID-19) outbreak, which significantly impacted various aspects of human life. This case study, focusing on Bangladesh, aimed to uncover the complex spatial patterns and potential risk factors influencing the virus’s uneven spread across 64 districts. To analyze spatial patterns, two techniques, namely Moran <i>I</i> and Geary <i>C</i>, were employed to study spatial autocorrelation. Hotspots and coldspots were identified using local Moran <i>I</i>, while spatial hotspots were pinpointed using local Getis Ord <i>G</i>. Exploring spatial heterogeneity involved implementing two non-spatial models (Poisson–Gamma and Poisson-Lognormal) and three spatial models (Conditional Autoregressive model, Convolution model, and Leroux model) through Gibbs sampling. The Leroux model emerged as the optimal choice, meeting criteria based on the lowest values of deviance information criterion and Watanabe–Akaike information criterion. Regression analysis revealed that factors such as humidity, population density, and urbanization were associated with an increase in COVID-19 cases, while the aging index appeared to hinder the virus’s spread. The research outcomes provide a comprehensive framework adaptable to the evolving nature of COVID-19 in Bangladesh. It categorizes influential factors into distinct clusters, enabling government agencies, policymakers, and healthcare professionals to make informed decisions for controlling the pandemic and addressing future infectious diseases.</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"40 2\",\"pages\":\"247 - 269\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-024-09815-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-024-09815-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 2019 年,世界面临着一场意想不到的严重全球健康危机--冠状病毒病(COVID-19)的爆发,对人类生活的各个方面产生了重大影响。本案例研究以孟加拉国为重点,旨在揭示影响病毒在 64 个地区不均衡传播的复杂空间模式和潜在风险因素。为了分析空间模式,我们采用了 Moran I 和 Geary C 两种技术来研究空间自相关性。在探索空间异质性时,通过吉布斯抽样,采用了两个非空间模型(泊松-伽马模型和泊松-对数正态模型)和三个空间模型(条件自回归模型、卷积模型和勒鲁模型)。Leroux 模型符合偏差信息准则和 Watanabe-Akaike 信息准则的最低值标准,成为最佳选择。回归分析表明,湿度、人口密度和城市化等因素与 COVID-19 病例的增加有关,而老龄化指数似乎阻碍了病毒的传播。研究成果提供了一个综合框架,可适应 COVID-19 在孟加拉国不断演变的性质。它将有影响的因素分为不同的群组,使政府机构、政策制定者和医疗保健专业人员能够做出明智的决策,以控制流行病和应对未来的传染病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial analysis of COVID-19 risk factors: a case study in Bangladesh

In 2019, the world grappled with an unexpected and severe global health crisis—the Coronavirus disease (COVID-19) outbreak, which significantly impacted various aspects of human life. This case study, focusing on Bangladesh, aimed to uncover the complex spatial patterns and potential risk factors influencing the virus’s uneven spread across 64 districts. To analyze spatial patterns, two techniques, namely Moran I and Geary C, were employed to study spatial autocorrelation. Hotspots and coldspots were identified using local Moran I, while spatial hotspots were pinpointed using local Getis Ord G. Exploring spatial heterogeneity involved implementing two non-spatial models (Poisson–Gamma and Poisson-Lognormal) and three spatial models (Conditional Autoregressive model, Convolution model, and Leroux model) through Gibbs sampling. The Leroux model emerged as the optimal choice, meeting criteria based on the lowest values of deviance information criterion and Watanabe–Akaike information criterion. Regression analysis revealed that factors such as humidity, population density, and urbanization were associated with an increase in COVID-19 cases, while the aging index appeared to hinder the virus’s spread. The research outcomes provide a comprehensive framework adaptable to the evolving nature of COVID-19 in Bangladesh. It categorizes influential factors into distinct clusters, enabling government agencies, policymakers, and healthcare professionals to make informed decisions for controlling the pandemic and addressing future infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerobiologia
Aerobiologia 环境科学-环境科学
CiteScore
4.50
自引率
15.00%
发文量
37
审稿时长
18-36 weeks
期刊介绍: Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more. Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.
期刊最新文献
A review on indoor air quality monitoring system: a mechatronics approach Use of weather types to analyze the simultaneous abundance of ozone, PM2.5 and allergenic tree pollen: focusing on the potential impact on asthma hospitalization in Montreal, Canada Unveiling the hidden hazards of smog: health implications and antibiotic resistance in perspective Correction to: Spore dispersal patterns of the ascomycete fungus Ramularia collo-cygni and their influence on disease epidemics Elemental composition of household dusts extracted in simulated body fluids and their impact on culturable pathogenic bacteria responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1