利用随机电子结构法计算的力来训练模型

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2024-03-15 DOI:10.1088/2516-1075/ad2eb0
David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann
{"title":"利用随机电子结构法计算的力来训练模型","authors":"David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann","doi":"10.1088/2516-1075/ad2eb0","DOIUrl":null,"url":null,"abstract":"Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training models using forces computed by stochastic electronic structure methods\",\"authors\":\"David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann\",\"doi\":\"10.1088/2516-1075/ad2eb0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad2eb0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad2eb0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子蒙特卡罗(QMC)在生成构建势能面所需的精确数据方面可以发挥非常重要的作用。我们认为,量子蒙特卡罗具有较小的系统偏差和更完整地覆盖相空间的能力等优势。随机噪声可以简化机器学习模型的训练。我们通过分析线性最小二乘法过程中的误差,讨论了随机误差如何影响有效模型的生成。然后,我们分析了噪声对多体硅模型的影响,发现噪声在某些情况下会改善生成的模型。然后,我们研究了 QMC 噪声对最近研究氢气相图时使用的两个高密度氢气机器学习模型的影响。噪声使我们能够估计模型中的误差。最后,我们讨论了未来的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training models using forces computed by stochastic electronic structure methods
Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1