{"title":"通过单次远场测量稳定确定阻抗障碍物","authors":"Huaian Diao, Hongyu Liu, Longyue Tao","doi":"10.1088/1361-6420/ad3087","DOIUrl":null,"url":null,"abstract":"We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in <inline-formula>\n<tex-math><?CDATA $\\mathbb{R}^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ipad3087ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"7 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable determination of an impedance obstacle by a single far-field measurement\",\"authors\":\"Huaian Diao, Hongyu Liu, Longyue Tao\",\"doi\":\"10.1088/1361-6420/ad3087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{R}^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ipad3087ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad3087\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stable determination of an impedance obstacle by a single far-field measurement
We establish sharp stability estimates of logarithmic type in determining an impedance obstacle in R2. The obstacle is the polygonal shape and the surface impedance parameter is non-zero constant. We establish the stability results using a single far-field pattern, constituting a longstanding problem in the inverse scattering theory. This is the first stability result in the literature in determining an impedance obstacle by a single far-field measurement. The stability in simultaneously determining the obstacle and the boundary impedance is established in terms of the classical Hausdorff distance. Several technical novelties and developments in the mathematical strategy developed for establishing the aforementioned stability results exist. First, the stability analysis is conducted around a corner point in a micro-local manner. Second, our stability estimates establish explicit relationships between the obstacle’s geometric configurations and the wave field’s vanishing order at the corner point. Third, we develop novel error propagation techniques to tackle singularities of the wave field at a corner with the impedance boundary condition.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.