应用于时域全波形反演的多材料相单一水平集函数方法

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Inverse Problems Pub Date : 2024-03-19 DOI:10.1088/1361-6420/ad2eca
P B de Castro, E C N Silva, E A Fancello
{"title":"应用于时域全波形反演的多材料相单一水平集函数方法","authors":"P B de Castro, E C N Silva, E A Fancello","doi":"10.1088/1361-6420/ad2eca","DOIUrl":null,"url":null,"abstract":"This paper presents a multiple material-phase level-set approach for acoustic full-waveform inversion in the time domain. By using a single level set (LS) function, several level values are used to define virtual boundaries between material phases with different (and known) wave propagation velocities. The aim of the proposed approach is to provide a suitable framework to identify multiple/nested inclusions or a finite number of almost homogeneous sedimentary layers with sharp interfaces between them. The use of a single LS function provides a significant reduction in the number of variables to be identified, when compared with the usual multi-material phase approaches defined by multiple functions, especially for problems with a high number of degrees of freedom. Numerical experiments show satisfactory results in identifying simultaneously different interfaces. Cases with and without inverse crime are evaluated, showing that the approach is reasonably robust in dealing with such a condition.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single level set function approach for multiple material-phases applied to full-waveform inversion in the time domain\",\"authors\":\"P B de Castro, E C N Silva, E A Fancello\",\"doi\":\"10.1088/1361-6420/ad2eca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multiple material-phase level-set approach for acoustic full-waveform inversion in the time domain. By using a single level set (LS) function, several level values are used to define virtual boundaries between material phases with different (and known) wave propagation velocities. The aim of the proposed approach is to provide a suitable framework to identify multiple/nested inclusions or a finite number of almost homogeneous sedimentary layers with sharp interfaces between them. The use of a single LS function provides a significant reduction in the number of variables to be identified, when compared with the usual multi-material phase approaches defined by multiple functions, especially for problems with a high number of degrees of freedom. Numerical experiments show satisfactory results in identifying simultaneously different interfaces. Cases with and without inverse crime are evaluated, showing that the approach is reasonably robust in dealing with such a condition.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad2eca\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2eca","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于时域声学全波形反演的多材料相位水平集方法。通过使用单电平集(LS)函数,使用多个电平值来定义具有不同(和已知)波传播速度的材料相之间的虚拟边界。所提议方法的目的是提供一个合适的框架,以识别多层/嵌套夹杂物或数量有限的几乎均质的沉积层(它们之间有尖锐的界面)。与通常由多个函数定义的多物质相位方法相比,使用单一 LS 函数可显著减少需要识别的变量数量,特别是对于自由度较高的问题。数值实验表明,同时识别不同界面的结果令人满意。对有反向犯罪和无反向犯罪的情况进行了评估,结果表明该方法在处理这种情况时相当稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A single level set function approach for multiple material-phases applied to full-waveform inversion in the time domain
This paper presents a multiple material-phase level-set approach for acoustic full-waveform inversion in the time domain. By using a single level set (LS) function, several level values are used to define virtual boundaries between material phases with different (and known) wave propagation velocities. The aim of the proposed approach is to provide a suitable framework to identify multiple/nested inclusions or a finite number of almost homogeneous sedimentary layers with sharp interfaces between them. The use of a single LS function provides a significant reduction in the number of variables to be identified, when compared with the usual multi-material phase approaches defined by multiple functions, especially for problems with a high number of degrees of freedom. Numerical experiments show satisfactory results in identifying simultaneously different interfaces. Cases with and without inverse crime are evaluated, showing that the approach is reasonably robust in dealing with such a condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
期刊最新文献
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach. A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging * A bilevel optimization method for inverse mean-field games * Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs Exact recovery of the support of piecewise constant images via total variation regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1