Wen-Yang Sun, A-Min Ding, Juan He, Jiadong Shi, Le Wang, Hui-Fang Xu, Dong Wang, Liu Ye
{"title":"退相干影响下的量子相干和纠缠","authors":"Wen-Yang Sun, A-Min Ding, Juan He, Jiadong Shi, Le Wang, Hui-Fang Xu, Dong Wang, Liu Ye","doi":"10.1088/1612-202x/ad2dc8","DOIUrl":null,"url":null,"abstract":"In this work, we delve into the dynamic traits of the relative entropy of quantum coherence (REQC) as the quantum system interacts with the different noisy channels, drawing comparisons with entanglement (concurrence). The research results demonstrate the broader prevalence and stronger robustness of the REQC as opposed to concurrence. It’s worth noting that the bit flip channel cannot uphold a constant nonzero frozen the REQC, besides, the concurrence follows a pattern of temporary reduction to zero, followed by recovery after a certain time span. More importantly, the REQC maintains its presence consistently until reaching a critical threshold, whereas concurrence experiences completely attenuation to zero under the influence of phase damping and amplitude damping channels.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum coherence and entanglement under the influence of decoherence\",\"authors\":\"Wen-Yang Sun, A-Min Ding, Juan He, Jiadong Shi, Le Wang, Hui-Fang Xu, Dong Wang, Liu Ye\",\"doi\":\"10.1088/1612-202x/ad2dc8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we delve into the dynamic traits of the relative entropy of quantum coherence (REQC) as the quantum system interacts with the different noisy channels, drawing comparisons with entanglement (concurrence). The research results demonstrate the broader prevalence and stronger robustness of the REQC as opposed to concurrence. It’s worth noting that the bit flip channel cannot uphold a constant nonzero frozen the REQC, besides, the concurrence follows a pattern of temporary reduction to zero, followed by recovery after a certain time span. More importantly, the REQC maintains its presence consistently until reaching a critical threshold, whereas concurrence experiences completely attenuation to zero under the influence of phase damping and amplitude damping channels.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad2dc8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad2dc8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Quantum coherence and entanglement under the influence of decoherence
In this work, we delve into the dynamic traits of the relative entropy of quantum coherence (REQC) as the quantum system interacts with the different noisy channels, drawing comparisons with entanglement (concurrence). The research results demonstrate the broader prevalence and stronger robustness of the REQC as opposed to concurrence. It’s worth noting that the bit flip channel cannot uphold a constant nonzero frozen the REQC, besides, the concurrence follows a pattern of temporary reduction to zero, followed by recovery after a certain time span. More importantly, the REQC maintains its presence consistently until reaching a critical threshold, whereas concurrence experiences completely attenuation to zero under the influence of phase damping and amplitude damping channels.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics