P. Quillery, B. Durand, M. Huang, K. Seck, H. Zhao
{"title":"使用 4 个对称输入霍普金森杆的动态双轴压缩试验","authors":"P. Quillery, B. Durand, M. Huang, K. Seck, H. Zhao","doi":"10.1007/s11340-024-01056-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Multiaxial dynamic loading situations occur in many industrial cases and multiaxial dynamic test development is thus a crucial issue.</p><h3>Objective</h3><p>To meet this challenge, a biaxial compression Hopkinson set-up with four symmetric input bars is designed.</p><h3>Methods</h3><p>The set-up consists of a vertical single striker, a sliding surface mechanism that transfers the impact energy to four horizontal tension bars, and four horizontal Hopkinson bars whose extremities are dynamically compressed by the previous tension bars. Strain gauges on two positions of each Hopkinson bar enable for force and displacement measurements at the bar-sample interfaces.</p><h3>Results</h3><p>Simple and biaxial compression tests are carried out on cuboid and cross samples, and the sample material dynamic behavior is deduced from simple compression tests.</p><h3>Conclusions</h3><p>The displacements are also estimated using digital image correlation, which confirms the previous measurements. The consistency of the global sample behavior identified from a biaxial compression test is checked by processing numerical simulations based on the behavior determined in simple compression. The results show that the experimental device can be used to identify any behavior law in dynamic biaxial compression.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 5","pages":"729 - 743"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Biaxial Compression Tests Using 4 Symmetric Input Hopkinson Bars\",\"authors\":\"P. Quillery, B. Durand, M. Huang, K. Seck, H. Zhao\",\"doi\":\"10.1007/s11340-024-01056-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Multiaxial dynamic loading situations occur in many industrial cases and multiaxial dynamic test development is thus a crucial issue.</p><h3>Objective</h3><p>To meet this challenge, a biaxial compression Hopkinson set-up with four symmetric input bars is designed.</p><h3>Methods</h3><p>The set-up consists of a vertical single striker, a sliding surface mechanism that transfers the impact energy to four horizontal tension bars, and four horizontal Hopkinson bars whose extremities are dynamically compressed by the previous tension bars. Strain gauges on two positions of each Hopkinson bar enable for force and displacement measurements at the bar-sample interfaces.</p><h3>Results</h3><p>Simple and biaxial compression tests are carried out on cuboid and cross samples, and the sample material dynamic behavior is deduced from simple compression tests.</p><h3>Conclusions</h3><p>The displacements are also estimated using digital image correlation, which confirms the previous measurements. The consistency of the global sample behavior identified from a biaxial compression test is checked by processing numerical simulations based on the behavior determined in simple compression. The results show that the experimental device can be used to identify any behavior law in dynamic biaxial compression.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 5\",\"pages\":\"729 - 743\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01056-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01056-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Dynamic Biaxial Compression Tests Using 4 Symmetric Input Hopkinson Bars
Background
Multiaxial dynamic loading situations occur in many industrial cases and multiaxial dynamic test development is thus a crucial issue.
Objective
To meet this challenge, a biaxial compression Hopkinson set-up with four symmetric input bars is designed.
Methods
The set-up consists of a vertical single striker, a sliding surface mechanism that transfers the impact energy to four horizontal tension bars, and four horizontal Hopkinson bars whose extremities are dynamically compressed by the previous tension bars. Strain gauges on two positions of each Hopkinson bar enable for force and displacement measurements at the bar-sample interfaces.
Results
Simple and biaxial compression tests are carried out on cuboid and cross samples, and the sample material dynamic behavior is deduced from simple compression tests.
Conclusions
The displacements are also estimated using digital image correlation, which confirms the previous measurements. The consistency of the global sample behavior identified from a biaxial compression test is checked by processing numerical simulations based on the behavior determined in simple compression. The results show that the experimental device can be used to identify any behavior law in dynamic biaxial compression.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.