Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie
{"title":"非线性分数阶微分方程:新的闭式行波解","authors":"Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie","doi":"10.1515/phys-2023-0192","DOIUrl":null,"url":null,"abstract":"The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2023-0192_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:tex-math>(-\\Phi (\\xi ))</jats:tex-math> </jats:alternatives> </jats:inline-formula> expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear fractional-order differential equations: New closed-form traveling-wave solutions\",\"authors\":\"Mashael M. AlBaidani, Umair Ali, Abdul Hamid Ganie\",\"doi\":\"10.1515/phys-2023-0192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2023-0192_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:tex-math>(-\\\\Phi (\\\\xi ))</jats:tex-math> </jats:alternatives> </jats:inline-formula> expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2023-0192\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0192","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear fractional-order differential equations: New closed-form traveling-wave solutions
The fractional-order differential equations (FO-DEs) faithfully capture both physical and biological phenomena making them useful for describing nature. This work presents the stable and more effective closed-form traveling-wave solutions for the well-known nonlinear space–time fractional-order Burgers equation and Lonngren-wave equation with additional terms using the exp(−Φ(ξ))(-\Phi (\xi )) expansion method. The main advantage of this method over other methods is that it provides more accuracy of the FO-DEs with less computational work. The fractional-order derivative operator is the Caputo sense. The transformation is used to reduce the space–time fractional differential equations (FDEs) into a standard ordinary differential equation. By putting the suggested strategy into practice, the new closed-form traveling-wave solutions for various values of parameters were obtained. The generated 3D graphical soliton wave solutions demonstrate the superiority and simplicity of the suggested method for the nonlinear space–time FDEs.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.