混合链:利用分布式学习实现快速、准确和安全的交易处理

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-03-26 DOI:10.1109/TPDS.2024.3381593
Amirhossein Taherpour;Xiaodong Wang
{"title":"混合链:利用分布式学习实现快速、准确和安全的交易处理","authors":"Amirhossein Taherpour;Xiaodong Wang","doi":"10.1109/TPDS.2024.3381593","DOIUrl":null,"url":null,"abstract":"In order to fully unlock the transformative power of distributed ledgers and blockchains, it is crucial to develop innovative consensus algorithms that can overcome the obstacles of security, scalability, and interoperability, which currently hinder their widespread adoption. This paper introduces HybridChain that combines the advantages of sharded blockchain and DAG distributed ledger, and a consensus algorithm that leverages decentralized learning. Our approach involves validators exchanging perceptions as votes to assess potential conflicts between transactions and the witness set, representing input transactions in the UTXO model. These perceptions collectively contribute to an intermediate belief regarding the validity of transactions. By integrating their beliefs with those of other validators, localized decisions are made to determine validity. Ultimately, a final consensus is achieved through a majority vote, ensuring precise and efficient validation of transactions. Our proposed approach is compared to the existing DAG-based scheme IOTA and the sharded blockchain Omniledger through extensive simulations. The results show that IOTA has high throughput and low latency but sacrifices accuracy and is vulnerable to orphanage attacks especially with low transaction rates. Omniledger achieves stable accuracy by increasing shards but has increased latency. In contrast, the proposed HybridChain exhibits fast, accurate, and secure transaction processing, and excellent scalability.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HybridChain: Fast, Accurate, and Secure Transaction Processing With Distributed Learning\",\"authors\":\"Amirhossein Taherpour;Xiaodong Wang\",\"doi\":\"10.1109/TPDS.2024.3381593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to fully unlock the transformative power of distributed ledgers and blockchains, it is crucial to develop innovative consensus algorithms that can overcome the obstacles of security, scalability, and interoperability, which currently hinder their widespread adoption. This paper introduces HybridChain that combines the advantages of sharded blockchain and DAG distributed ledger, and a consensus algorithm that leverages decentralized learning. Our approach involves validators exchanging perceptions as votes to assess potential conflicts between transactions and the witness set, representing input transactions in the UTXO model. These perceptions collectively contribute to an intermediate belief regarding the validity of transactions. By integrating their beliefs with those of other validators, localized decisions are made to determine validity. Ultimately, a final consensus is achieved through a majority vote, ensuring precise and efficient validation of transactions. Our proposed approach is compared to the existing DAG-based scheme IOTA and the sharded blockchain Omniledger through extensive simulations. The results show that IOTA has high throughput and low latency but sacrifices accuracy and is vulnerable to orphanage attacks especially with low transaction rates. Omniledger achieves stable accuracy by increasing shards but has increased latency. In contrast, the proposed HybridChain exhibits fast, accurate, and secure transaction processing, and excellent scalability.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10480262/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10480262/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为了充分释放分布式账本和区块链的变革力量,必须开发创新的共识算法,以克服目前阻碍其广泛应用的安全性、可扩展性和互操作性等障碍。本文介绍了混合链(HybridChain),它结合了分片区块链和 DAG 分布式分类账的优势,以及一种利用去中心化学习的共识算法。我们的方法涉及验证者交换看法作为选票,以评估交易和证人集(代表UTXO模型中的输入交易)之间的潜在冲突。这些看法共同构成了关于交易有效性的中间信念。通过将他们的信念与其他验证者的信念相结合,就地做出决定以确定有效性。最终,通过多数投票达成最终共识,确保交易验证的精确性和高效性。我们提出的方法通过大量模拟,与现有的基于 DAG 的方案 IOTA 和分片区块链 Omniledger 进行了比较。结果表明,IOTA 具有高吞吐量和低延迟的特点,但牺牲了准确性,而且容易受到孤儿攻击,尤其是在交易率较低的情况下。Omniledger 通过增加分片实现了稳定的准确性,但延迟增加了。相比之下,拟议的 HybridChain 具有快速、准确、安全的交易处理能力和出色的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HybridChain: Fast, Accurate, and Secure Transaction Processing With Distributed Learning
In order to fully unlock the transformative power of distributed ledgers and blockchains, it is crucial to develop innovative consensus algorithms that can overcome the obstacles of security, scalability, and interoperability, which currently hinder their widespread adoption. This paper introduces HybridChain that combines the advantages of sharded blockchain and DAG distributed ledger, and a consensus algorithm that leverages decentralized learning. Our approach involves validators exchanging perceptions as votes to assess potential conflicts between transactions and the witness set, representing input transactions in the UTXO model. These perceptions collectively contribute to an intermediate belief regarding the validity of transactions. By integrating their beliefs with those of other validators, localized decisions are made to determine validity. Ultimately, a final consensus is achieved through a majority vote, ensuring precise and efficient validation of transactions. Our proposed approach is compared to the existing DAG-based scheme IOTA and the sharded blockchain Omniledger through extensive simulations. The results show that IOTA has high throughput and low latency but sacrifices accuracy and is vulnerable to orphanage attacks especially with low transaction rates. Omniledger achieves stable accuracy by increasing shards but has increased latency. In contrast, the proposed HybridChain exhibits fast, accurate, and secure transaction processing, and excellent scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
Freyr$^+$:Harvesting Idle Resources in Serverless Computing Via Deep Reinforcement Learning Efficient Inference for Pruned CNN Models on Mobile Devices With Holistic Sparsity Alignment Efficient Cross-Cloud Partial Reduce With CREW DeepCAT+: A Low-Cost and Transferrable Online Configuration Auto-Tuning Approach for Big Data Frameworks An Evaluation Framework for Dynamic Thermal Management Strategies in 3D MultiProcessor System-on-Chip Co-Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1