S Q Dai, W Zhou, L Y Duan, K Tang, Z Y Yang, R J Cao, F R Tay, L N Niu, J H Chen
{"title":"含星爆单体的高性能牙科树脂。","authors":"S Q Dai, W Zhou, L Y Duan, K Tang, Z Y Yang, R J Cao, F R Tay, L N Niu, J H Chen","doi":"10.1177/00220345241232312","DOIUrl":null,"url":null,"abstract":"<p><p>Dimethacrylate-based chemistries feature extensively as resin monomers in dental resin-based materials due to their distinguished overall performance. However, challenges endure, encompassing inadequate mechanical attributes, volumetric shrinkage, and estrogenicity. Herein, we first synthesized a novel resin monomer, 9-armed starburst polyurethane acrylate (NPUA), via the grafting-onto approach. Compared to the primary commercial dental monomer 2,2-bis [p-(2'-hydroxy-3'-methacryloxypropoxy) phenyl] propane (Bis-GMA) (with a viscosity of 1,174 ± 3 Pa·s and volumetric shrinkage of 4.7% ± 0.1%), the NPUA monomer achieves the lower viscosity (158 ± 1 Pa·s), volumetric shrinkage (2.5% ± 0.1%), and cytotoxicity (<i>P</i> < 0.05). The NPUA-based resins exhibit the higher flexural strength, flexural modulus, hardness, and hydrophobicity and lower volumetric shrinkage, water absorption, and solubility compared to the Bis-GMA (70 wt%)/TEGDMA (30 wt%) resins. The NPUA-based composites exhibit significantly higher flexural strength, flexural modulus, and hardness and lower volumetric shrinkage (171.4 ± 3.0 MPa, 12.6 ± 0.5 GPa, 2.0 ± 0.2 GPa, and 3.4% ± 0.2%, respectively) compared to the Bis-GMA group (120.3 ± 4.7 MPa, 9.4 ± 0.7 GPa, 1.5 ± 0.1 GPa, and 4.7% ± 0.2%, respectively; <i>P</i> < 0.05). This work presents a viable avenue for augmenting the physicochemical attributes of dental resins.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145299/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Performance Dental Resins Containing a Starburst Monomer.\",\"authors\":\"S Q Dai, W Zhou, L Y Duan, K Tang, Z Y Yang, R J Cao, F R Tay, L N Niu, J H Chen\",\"doi\":\"10.1177/00220345241232312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimethacrylate-based chemistries feature extensively as resin monomers in dental resin-based materials due to their distinguished overall performance. However, challenges endure, encompassing inadequate mechanical attributes, volumetric shrinkage, and estrogenicity. Herein, we first synthesized a novel resin monomer, 9-armed starburst polyurethane acrylate (NPUA), via the grafting-onto approach. Compared to the primary commercial dental monomer 2,2-bis [p-(2'-hydroxy-3'-methacryloxypropoxy) phenyl] propane (Bis-GMA) (with a viscosity of 1,174 ± 3 Pa·s and volumetric shrinkage of 4.7% ± 0.1%), the NPUA monomer achieves the lower viscosity (158 ± 1 Pa·s), volumetric shrinkage (2.5% ± 0.1%), and cytotoxicity (<i>P</i> < 0.05). The NPUA-based resins exhibit the higher flexural strength, flexural modulus, hardness, and hydrophobicity and lower volumetric shrinkage, water absorption, and solubility compared to the Bis-GMA (70 wt%)/TEGDMA (30 wt%) resins. The NPUA-based composites exhibit significantly higher flexural strength, flexural modulus, and hardness and lower volumetric shrinkage (171.4 ± 3.0 MPa, 12.6 ± 0.5 GPa, 2.0 ± 0.2 GPa, and 3.4% ± 0.2%, respectively) compared to the Bis-GMA group (120.3 ± 4.7 MPa, 9.4 ± 0.7 GPa, 1.5 ± 0.1 GPa, and 4.7% ± 0.2%, respectively; <i>P</i> < 0.05). This work presents a viable avenue for augmenting the physicochemical attributes of dental resins.</p>\",\"PeriodicalId\":94075,\"journal\":{\"name\":\"Journal of dental research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of dental research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241232312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345241232312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
High-Performance Dental Resins Containing a Starburst Monomer.
Dimethacrylate-based chemistries feature extensively as resin monomers in dental resin-based materials due to their distinguished overall performance. However, challenges endure, encompassing inadequate mechanical attributes, volumetric shrinkage, and estrogenicity. Herein, we first synthesized a novel resin monomer, 9-armed starburst polyurethane acrylate (NPUA), via the grafting-onto approach. Compared to the primary commercial dental monomer 2,2-bis [p-(2'-hydroxy-3'-methacryloxypropoxy) phenyl] propane (Bis-GMA) (with a viscosity of 1,174 ± 3 Pa·s and volumetric shrinkage of 4.7% ± 0.1%), the NPUA monomer achieves the lower viscosity (158 ± 1 Pa·s), volumetric shrinkage (2.5% ± 0.1%), and cytotoxicity (P < 0.05). The NPUA-based resins exhibit the higher flexural strength, flexural modulus, hardness, and hydrophobicity and lower volumetric shrinkage, water absorption, and solubility compared to the Bis-GMA (70 wt%)/TEGDMA (30 wt%) resins. The NPUA-based composites exhibit significantly higher flexural strength, flexural modulus, and hardness and lower volumetric shrinkage (171.4 ± 3.0 MPa, 12.6 ± 0.5 GPa, 2.0 ± 0.2 GPa, and 3.4% ± 0.2%, respectively) compared to the Bis-GMA group (120.3 ± 4.7 MPa, 9.4 ± 0.7 GPa, 1.5 ± 0.1 GPa, and 4.7% ± 0.2%, respectively; P < 0.05). This work presents a viable avenue for augmenting the physicochemical attributes of dental resins.