东喜马拉雅前线 1950 年阿萨姆大地震的多模型地震易感性评估

Arun Bhadran , B.P. Duarah , Drishya Girishbai , A.L. Achu , Sandeep Lahon , N.P. Jesiya , V.K. Vijesh , Girish Gopinath
{"title":"东喜马拉雅前线 1950 年阿萨姆大地震的多模型地震易感性评估","authors":"Arun Bhadran ,&nbsp;B.P. Duarah ,&nbsp;Drishya Girishbai ,&nbsp;A.L. Achu ,&nbsp;Sandeep Lahon ,&nbsp;N.P. Jesiya ,&nbsp;V.K. Vijesh ,&nbsp;Girish Gopinath","doi":"10.1016/j.geogeo.2024.100270","DOIUrl":null,"url":null,"abstract":"<div><p>The seismic susceptibility and mitigation management is paramount concern in tectonically active area like Northeastern India. This area has been devastated innumerably during the 1950 Assam great earthquake. The present study area falls in the foreland basin (Brahmaputra Valley) of Eastern Himalaya. This region is seismically vulnerable due to the tectonic complexity caused by the convergence of the Eurasian, Indian, and Burmese plates. In such, an area optimal disaster management and preparedness is necessary to define the non-linear character of seismic susceptibility, where population and unscientific urbanization have increased manifold. Therefore, for the present study, various multi-criteria decision making (MCDM) methods such as analytical hierarchy process (AHP), fuzzy-AHP (FAHP), and maximum entropy technique (MaxEnt) have been used for determining the seismic susceptibility, by assigning weightage to nine controlling factors such as: predominant frequency (f0), geology (G), vulnerability index (K), peak amplification (A0), liquefaction potential (LP), groundwater condition (WT), shear wave velocity (Vs30), peak ground acceleration (PGA), and land use/land cover (LU). The MaxEnt model exhibits the highest accuracy (87.5%) when the performance of the models was compared using the receiver operating characteristic curve (ROC) and area under the curve (AUC) value. Further, overlay analysis of best seismic susceptibility model using MaxEnt and PGV-based Japan Meteorological Agency (JMA) intensity shows that 40% the study area is in the very high and high seismic risk zone. In tectonically active areas, this kind of integration work is essential to improves the mitigation strategy and aids urban planners in designing earthquake-resistant buildings.</p></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"3 3","pages":"Article 100270"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772883824000207/pdfft?md5=768e66aae11cae85611c3754ce2b30b9&pid=1-s2.0-S2772883824000207-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-model seismic susceptibility assessment of the 1950 great Assam earthquake in the Eastern Himalayan front\",\"authors\":\"Arun Bhadran ,&nbsp;B.P. Duarah ,&nbsp;Drishya Girishbai ,&nbsp;A.L. Achu ,&nbsp;Sandeep Lahon ,&nbsp;N.P. Jesiya ,&nbsp;V.K. Vijesh ,&nbsp;Girish Gopinath\",\"doi\":\"10.1016/j.geogeo.2024.100270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The seismic susceptibility and mitigation management is paramount concern in tectonically active area like Northeastern India. This area has been devastated innumerably during the 1950 Assam great earthquake. The present study area falls in the foreland basin (Brahmaputra Valley) of Eastern Himalaya. This region is seismically vulnerable due to the tectonic complexity caused by the convergence of the Eurasian, Indian, and Burmese plates. In such, an area optimal disaster management and preparedness is necessary to define the non-linear character of seismic susceptibility, where population and unscientific urbanization have increased manifold. Therefore, for the present study, various multi-criteria decision making (MCDM) methods such as analytical hierarchy process (AHP), fuzzy-AHP (FAHP), and maximum entropy technique (MaxEnt) have been used for determining the seismic susceptibility, by assigning weightage to nine controlling factors such as: predominant frequency (f0), geology (G), vulnerability index (K), peak amplification (A0), liquefaction potential (LP), groundwater condition (WT), shear wave velocity (Vs30), peak ground acceleration (PGA), and land use/land cover (LU). The MaxEnt model exhibits the highest accuracy (87.5%) when the performance of the models was compared using the receiver operating characteristic curve (ROC) and area under the curve (AUC) value. Further, overlay analysis of best seismic susceptibility model using MaxEnt and PGV-based Japan Meteorological Agency (JMA) intensity shows that 40% the study area is in the very high and high seismic risk zone. In tectonically active areas, this kind of integration work is essential to improves the mitigation strategy and aids urban planners in designing earthquake-resistant buildings.</p></div>\",\"PeriodicalId\":100582,\"journal\":{\"name\":\"Geosystems and Geoenvironment\",\"volume\":\"3 3\",\"pages\":\"Article 100270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772883824000207/pdfft?md5=768e66aae11cae85611c3754ce2b30b9&pid=1-s2.0-S2772883824000207-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystems and Geoenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772883824000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883824000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震易发性和减灾管理是印度东北部等构造活跃地区最关心的问题。在 1950 年阿萨姆邦大地震中,该地区遭受了巨大破坏。本研究区域位于东喜马拉雅山脉的前陆盆地(雅鲁藏布江谷地)。由于欧亚板块、印度板块和缅甸板块的交汇造成了构造的复杂性,该地区容易发生地震。在人口和不科学的城市化成倍增加的情况下,有必要对该地区进行最佳灾害管理和防备,以确定地震易发性的非线性特征。因此,本研究采用了多种多标准决策(MCDM)方法,如分析层次过程(AHP)、模糊-AHP(FAHP)和最大熵技术(MaxEnt),通过为九个控制因素分配权重来确定地震易感性,这些因素包括主要频率 (f0)、地质 (G)、易损性指数 (K)、峰值放大 (A0)、液化潜力 (LP)、地下水条件 (WT)、剪切波速度 (Vs30)、峰值地面加速度 (PGA) 和土地利用/土地覆盖 (LU)。在使用接收器工作特征曲线(ROC)和曲线下面积(AUC)值对各模型的性能进行比较时,MaxEnt 模型的准确度最高(87.5%)。此外,使用 MaxEnt 和基于 PGV 的日本气象厅(JMA)烈度对最佳地震易感性模型进行的叠加分析表明,40% 的研究区域位于极高和高地震风险区。在构造活跃的地区,这种整合工作对于改进减灾战略和帮助城市规划者设计抗震建筑至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-model seismic susceptibility assessment of the 1950 great Assam earthquake in the Eastern Himalayan front

The seismic susceptibility and mitigation management is paramount concern in tectonically active area like Northeastern India. This area has been devastated innumerably during the 1950 Assam great earthquake. The present study area falls in the foreland basin (Brahmaputra Valley) of Eastern Himalaya. This region is seismically vulnerable due to the tectonic complexity caused by the convergence of the Eurasian, Indian, and Burmese plates. In such, an area optimal disaster management and preparedness is necessary to define the non-linear character of seismic susceptibility, where population and unscientific urbanization have increased manifold. Therefore, for the present study, various multi-criteria decision making (MCDM) methods such as analytical hierarchy process (AHP), fuzzy-AHP (FAHP), and maximum entropy technique (MaxEnt) have been used for determining the seismic susceptibility, by assigning weightage to nine controlling factors such as: predominant frequency (f0), geology (G), vulnerability index (K), peak amplification (A0), liquefaction potential (LP), groundwater condition (WT), shear wave velocity (Vs30), peak ground acceleration (PGA), and land use/land cover (LU). The MaxEnt model exhibits the highest accuracy (87.5%) when the performance of the models was compared using the receiver operating characteristic curve (ROC) and area under the curve (AUC) value. Further, overlay analysis of best seismic susceptibility model using MaxEnt and PGV-based Japan Meteorological Agency (JMA) intensity shows that 40% the study area is in the very high and high seismic risk zone. In tectonically active areas, this kind of integration work is essential to improves the mitigation strategy and aids urban planners in designing earthquake-resistant buildings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Olivine composition of calcite-carbonatite from Sevvattur carbonatite alkaline complex, Dharmapuri Rift Zone, Southern Granulite Terrain, India Composition of olivines and spinel group minerals in aillikites from the Bushkanay dyke, South Siberian Craton: Insights into alkaline melt sources and evolution Petrology of ijolite xenoliths entrained in a nephelinite dyke from the Kamthai area, Late Cretaceous polychronous Sarnu-Dandali alkaline complex, North-West India: Evidence for recurrent magmatic pulses and magma mixing Petrogenetic and geochemical constraints on ca. 1.89–1.88 Ga Bastanar mafic dyke swarm, Bastar craton, India: Insights into MORB- and OIB-type contributions and interactions with metasomatized subcontinental lithospheric mantle Nd isotope systematics of Late Paleozoic granitoids from the Western Transbaikalia (Russia): Petrological consequences and plume model testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1