在高速公路上骑车开源神经科学软件的危险状况

Britta U. Westner, Daniel R. McCloy, Eric Larson, Alexandre Gramfort, Daniel S. Katz, Arfon M. Smith, invited co-signees
{"title":"在高速公路上骑车开源神经科学软件的危险状况","authors":"Britta U. Westner, Daniel R. McCloy, Eric Larson, Alexandre Gramfort, Daniel S. Katz, Arfon M. Smith, invited co-signees","doi":"arxiv-2403.19394","DOIUrl":null,"url":null,"abstract":"Most scientists need software to perform their research (Barker et al., 2020;\nCarver et al., 2022; Hettrick, 2014; Hettrick et al., 2014; Switters and Osimo,\n2019), and neuroscientists are no exception. Whether we work with reaction\ntimes, electrophysiological signals, or magnetic resonance imaging data, we\nrely on software to acquire, analyze, and statistically evaluate the raw data\nwe obtain - or to generate such data if we work with simulations. In recent\nyears there has been a shift toward relying on free, open-source scientific\nsoftware (FOSSS) for neuroscience data analysis (Poldrack et al., 2019), in\nline with the broader open science movement in academia (McKiernan et al.,\n2016) and wider industry trends (Eghbal, 2016). Importantly, FOSSS is typically\ndeveloped by working scientists (not professional software developers) which\nsets up a precarious situation given the nature of the typical academic\nworkplace (wherein academics, especially in their early careers, are on short\nand fixed term contracts). In this paper, we will argue that the existing\necosystem of neuroscientific open source software is brittle, and discuss why\nand how the neuroscience community needs to come together to ensure a healthy\ngrowth of our software landscape to the benefit of all.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycling on the Freeway: The Perilous State of Open Source Neuroscience Software\",\"authors\":\"Britta U. Westner, Daniel R. McCloy, Eric Larson, Alexandre Gramfort, Daniel S. Katz, Arfon M. Smith, invited co-signees\",\"doi\":\"arxiv-2403.19394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most scientists need software to perform their research (Barker et al., 2020;\\nCarver et al., 2022; Hettrick, 2014; Hettrick et al., 2014; Switters and Osimo,\\n2019), and neuroscientists are no exception. Whether we work with reaction\\ntimes, electrophysiological signals, or magnetic resonance imaging data, we\\nrely on software to acquire, analyze, and statistically evaluate the raw data\\nwe obtain - or to generate such data if we work with simulations. In recent\\nyears there has been a shift toward relying on free, open-source scientific\\nsoftware (FOSSS) for neuroscience data analysis (Poldrack et al., 2019), in\\nline with the broader open science movement in academia (McKiernan et al.,\\n2016) and wider industry trends (Eghbal, 2016). Importantly, FOSSS is typically\\ndeveloped by working scientists (not professional software developers) which\\nsets up a precarious situation given the nature of the typical academic\\nworkplace (wherein academics, especially in their early careers, are on short\\nand fixed term contracts). In this paper, we will argue that the existing\\necosystem of neuroscientific open source software is brittle, and discuss why\\nand how the neuroscience community needs to come together to ensure a healthy\\ngrowth of our software landscape to the benefit of all.\",\"PeriodicalId\":501219,\"journal\":{\"name\":\"arXiv - QuanBio - Other Quantitative Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Other Quantitative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.19394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.19394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数科学家都需要软件来完成他们的研究(Barker et al.,2020;Carver et al.,2022;Hettrick,2014;Hettrick et al.,2014;Switters and Osimo,2019),神经科学家也不例外。无论我们研究的是反应时、电生理信号还是磁共振成像数据,我们都依赖软件来获取、分析和统计评估我们获得的原始数据,如果我们研究的是模拟数据,则需要软件来生成这些数据。近年来,神经科学数据分析开始转向依赖免费开源科学软件(FOSSS)(Poldrack 等人,2019 年),这与学术界更广泛的开放科学运动(McKiernan 等人,2016 年)和更广泛的行业趋势(Eghbal,2016 年)是一致的。重要的是,FOSSS 通常是由在职科学家(而非专业软件开发人员)开发的,鉴于典型学术工作场所的性质(学术界人士,尤其是处于职业生涯早期的人士,都是签订短期和固定期限合同),这就造成了一种不稳定的局面。在本文中,我们将论证现有的神经科学开源软件生态系统是脆弱的,并讨论为什么神经科学社区需要团结起来,以确保我们的软件环境健康发展,造福所有人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cycling on the Freeway: The Perilous State of Open Source Neuroscience Software
Most scientists need software to perform their research (Barker et al., 2020; Carver et al., 2022; Hettrick, 2014; Hettrick et al., 2014; Switters and Osimo, 2019), and neuroscientists are no exception. Whether we work with reaction times, electrophysiological signals, or magnetic resonance imaging data, we rely on software to acquire, analyze, and statistically evaluate the raw data we obtain - or to generate such data if we work with simulations. In recent years there has been a shift toward relying on free, open-source scientific software (FOSSS) for neuroscience data analysis (Poldrack et al., 2019), in line with the broader open science movement in academia (McKiernan et al., 2016) and wider industry trends (Eghbal, 2016). Importantly, FOSSS is typically developed by working scientists (not professional software developers) which sets up a precarious situation given the nature of the typical academic workplace (wherein academics, especially in their early careers, are on short and fixed term contracts). In this paper, we will argue that the existing ecosystem of neuroscientific open source software is brittle, and discuss why and how the neuroscience community needs to come together to ensure a healthy growth of our software landscape to the benefit of all.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities and challenges of mRNA technologies in development of Dengue Virus Vaccine Compatibility studies of loquat scions with loquat and quince rootstocks Analysis of Potential Biases and Validity of Studies Using Multiverse Approaches to Assess the Impacts of Government Responses to Epidemics Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review Unveiling Parkinson's Disease-like Changes Triggered by Spaceflight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1