Éva Oravecz, Zsolt Benkó, Róbert Arató, István Dunkl, Gábor Héja, Szilvia Kövér, Tibor Németh, László Fodor
{"title":"同源低温变形事件的年龄、运动学和热约束:从内克泽塞尼(阿尔卑斯-喀尔巴阡山-第纳尔地区)隆起的热时学和构造数据中获得的启示","authors":"Éva Oravecz, Zsolt Benkó, Róbert Arató, István Dunkl, Gábor Héja, Szilvia Kövér, Tibor Németh, László Fodor","doi":"10.1029/2023tc008189","DOIUrl":null,"url":null,"abstract":"Unraveling the age and kinematics of low temperature deformation events is crucial in understanding the late-stage evolution of orogens. However, accurate age constraints can often be challenging to obtain due to unideal outcrop conditions, large sedimentary hiatuses or the lack of well-defined thermal events. In this study, we show on the example of the Nekézseny Thrust, a poorly exposed late orogenic thrust in the southern Western Carpathians, that a combined approach of structural analysis and multi-method thermochronology can provide the necessary temporal, kinematic and thermal constraints for a detailed reconstruction of the deformation history. While structural mapping revealed that the Late Cretaceous Uppony Gosau Basin in the footwall of the Nekézseny Thrust underwent a significant post-Campanian and pre-Miocene shortening, K/Ar dating of fault gouge samples from the main fault zone constrained the primary thrusting event to the Maastrichtian. Based on the acquired apatite fission-track and (U-Th)/He ages, subsequent heating of the Upper Cretaceous sediments due to tectonic burial was limited to 75–100°C, followed by deformation-related and gradual cooling between the Eocene and Early Miocene. Considering the reconstructed deformation history, as well as the large-scale tectonic affinity of the displaced units in its footwall and hanging wall, the Nekézseny Thrust is a far-traveled (ca. 600 km) segment of the Late Cretaceous Alps-Dinarides contact zone, whose development was linked to the switch from lower plate to upper plate position with respect to the Sava Zone and Alpine Tethys sutures, respectively.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"28 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age, Kinematic and Thermal Constraints of Syn-Orogenic Low-Temperature Deformation Events: Insights From Thermochronology and Structural Data of the Nekézseny Thrust (Alpine-Carpathian-Dinaric Area)\",\"authors\":\"Éva Oravecz, Zsolt Benkó, Róbert Arató, István Dunkl, Gábor Héja, Szilvia Kövér, Tibor Németh, László Fodor\",\"doi\":\"10.1029/2023tc008189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unraveling the age and kinematics of low temperature deformation events is crucial in understanding the late-stage evolution of orogens. However, accurate age constraints can often be challenging to obtain due to unideal outcrop conditions, large sedimentary hiatuses or the lack of well-defined thermal events. In this study, we show on the example of the Nekézseny Thrust, a poorly exposed late orogenic thrust in the southern Western Carpathians, that a combined approach of structural analysis and multi-method thermochronology can provide the necessary temporal, kinematic and thermal constraints for a detailed reconstruction of the deformation history. While structural mapping revealed that the Late Cretaceous Uppony Gosau Basin in the footwall of the Nekézseny Thrust underwent a significant post-Campanian and pre-Miocene shortening, K/Ar dating of fault gouge samples from the main fault zone constrained the primary thrusting event to the Maastrichtian. Based on the acquired apatite fission-track and (U-Th)/He ages, subsequent heating of the Upper Cretaceous sediments due to tectonic burial was limited to 75–100°C, followed by deformation-related and gradual cooling between the Eocene and Early Miocene. Considering the reconstructed deformation history, as well as the large-scale tectonic affinity of the displaced units in its footwall and hanging wall, the Nekézseny Thrust is a far-traveled (ca. 600 km) segment of the Late Cretaceous Alps-Dinarides contact zone, whose development was linked to the switch from lower plate to upper plate position with respect to the Sava Zone and Alpine Tethys sutures, respectively.\",\"PeriodicalId\":22351,\"journal\":{\"name\":\"Tectonics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023tc008189\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023tc008189","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Age, Kinematic and Thermal Constraints of Syn-Orogenic Low-Temperature Deformation Events: Insights From Thermochronology and Structural Data of the Nekézseny Thrust (Alpine-Carpathian-Dinaric Area)
Unraveling the age and kinematics of low temperature deformation events is crucial in understanding the late-stage evolution of orogens. However, accurate age constraints can often be challenging to obtain due to unideal outcrop conditions, large sedimentary hiatuses or the lack of well-defined thermal events. In this study, we show on the example of the Nekézseny Thrust, a poorly exposed late orogenic thrust in the southern Western Carpathians, that a combined approach of structural analysis and multi-method thermochronology can provide the necessary temporal, kinematic and thermal constraints for a detailed reconstruction of the deformation history. While structural mapping revealed that the Late Cretaceous Uppony Gosau Basin in the footwall of the Nekézseny Thrust underwent a significant post-Campanian and pre-Miocene shortening, K/Ar dating of fault gouge samples from the main fault zone constrained the primary thrusting event to the Maastrichtian. Based on the acquired apatite fission-track and (U-Th)/He ages, subsequent heating of the Upper Cretaceous sediments due to tectonic burial was limited to 75–100°C, followed by deformation-related and gradual cooling between the Eocene and Early Miocene. Considering the reconstructed deformation history, as well as the large-scale tectonic affinity of the displaced units in its footwall and hanging wall, the Nekézseny Thrust is a far-traveled (ca. 600 km) segment of the Late Cretaceous Alps-Dinarides contact zone, whose development was linked to the switch from lower plate to upper plate position with respect to the Sava Zone and Alpine Tethys sutures, respectively.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.