Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos
{"title":"SPIRAL:非凸有限和最小化的超线性收敛增量近端算法","authors":"Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos","doi":"10.1007/s10589-023-00550-8","DOIUrl":null,"url":null,"abstract":"<p>We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"15 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization\",\"authors\":\"Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos\",\"doi\":\"10.1007/s10589-023-00550-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.\\n</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00550-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00550-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.