M. P. Sreerag, V. Abhijith Vijay, S. Varalakshmi, B. Rajasekaran
{"title":"用于金属增材制造的高速空气燃料喷涂--关于铜的研究","authors":"M. P. Sreerag, V. Abhijith Vijay, S. Varalakshmi, B. Rajasekaran","doi":"10.1007/s11666-024-01759-7","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to its reflectivity, Copper manufacturing has always been challenging through laser-based additive manufacturing. In this study, we demonstrate additive/bulk manufacturing of copper using high velocity air fuel (HVAF) spray technology, an emerging variant in the thermal spray family. Rapid deposition of millimeter scale copper parts with good mechanical integrity and decent ductility, comparable to that of cold spray, has been shown feasible. The mechanical properties measured along different built directions showed no significance to be considered anisotropic. Electron backscattered diffraction analysis revealed the possibility of developing favorable bimodal grain distribution with a high volume fraction of ultrafine grains (>50%). However, the intersplat porosities and continuous pores were found to be detrimental despite the low overall porosity. HVAF technology demonstrates great potential and appears to be a promising process methodology for bulk/additive manufacturing of metals with a rapid production rate.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 4","pages":"1178 - 1190"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Velocity Air Fuel Spraying for Metal Additive Manufacturing - A Study on Copper\",\"authors\":\"M. P. Sreerag, V. Abhijith Vijay, S. Varalakshmi, B. Rajasekaran\",\"doi\":\"10.1007/s11666-024-01759-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to its reflectivity, Copper manufacturing has always been challenging through laser-based additive manufacturing. In this study, we demonstrate additive/bulk manufacturing of copper using high velocity air fuel (HVAF) spray technology, an emerging variant in the thermal spray family. Rapid deposition of millimeter scale copper parts with good mechanical integrity and decent ductility, comparable to that of cold spray, has been shown feasible. The mechanical properties measured along different built directions showed no significance to be considered anisotropic. Electron backscattered diffraction analysis revealed the possibility of developing favorable bimodal grain distribution with a high volume fraction of ultrafine grains (>50%). However, the intersplat porosities and continuous pores were found to be detrimental despite the low overall porosity. HVAF technology demonstrates great potential and appears to be a promising process methodology for bulk/additive manufacturing of metals with a rapid production rate.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 4\",\"pages\":\"1178 - 1190\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01759-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01759-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
High Velocity Air Fuel Spraying for Metal Additive Manufacturing - A Study on Copper
Owing to its reflectivity, Copper manufacturing has always been challenging through laser-based additive manufacturing. In this study, we demonstrate additive/bulk manufacturing of copper using high velocity air fuel (HVAF) spray technology, an emerging variant in the thermal spray family. Rapid deposition of millimeter scale copper parts with good mechanical integrity and decent ductility, comparable to that of cold spray, has been shown feasible. The mechanical properties measured along different built directions showed no significance to be considered anisotropic. Electron backscattered diffraction analysis revealed the possibility of developing favorable bimodal grain distribution with a high volume fraction of ultrafine grains (>50%). However, the intersplat porosities and continuous pores were found to be detrimental despite the low overall porosity. HVAF technology demonstrates great potential and appears to be a promising process methodology for bulk/additive manufacturing of metals with a rapid production rate.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.