{"title":"MST1/2调节骨骼肌再生过程中纤维/脂肪生成祖细胞命运的决定。","authors":"Kezhi Wang, Jingjing Yang, Yina An, Jing Wang, Shuyu Tan, Hui Xu, Yanjun Dong","doi":"10.1016/j.stemcr.2024.02.010","DOIUrl":null,"url":null,"abstract":"<p><p>Defective skeletal muscle regeneration is often accompanied by fibrosis. Fibroblast/adipose progenitors (FAPs) are important in these processes, however, the regulation of FAP fate decisions is unclear. Here, using inducible conditional knockout mice, we show that blocking mammalian Ste20-like kinases 1/2 (MST1/2) of FAPs prevented apoptosis and reduced interleukin-6 secretion in vivo and in vitro, which impaired myoblast proliferation and differentiation, as well as impaired muscle regeneration. Deletion of Mst1/2 increased co-localization of Yes-associated protein (YAP) with Smad2/3 in nuclei and promoted differentiation of FAPs toward myofibroblasts, resulting in excessive collagen deposition and skeletal muscle fibrosis. Meanwhile, inhibition of MST1/2 increased YAP/Transcriptional co-activator with PDZ-binding motif activation, which promoted activation of the WNT/β-catenin pathway and impaired the differentiation of FAPs toward adipocytes. These results reveal a new mechanism for MST1/2 action in disrupted skeletal muscle regeneration and fibrosis via regulation of FAP apoptosis and differentiation. MST1/2 is a potential therapeutic target for the treatment of some myopathies.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"501-514"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096422/pdf/","citationCount":"0","resultStr":"{\"title\":\"MST1/2 regulates fibro/adipogenic progenitor fate decisions in skeletal muscle regeneration.\",\"authors\":\"Kezhi Wang, Jingjing Yang, Yina An, Jing Wang, Shuyu Tan, Hui Xu, Yanjun Dong\",\"doi\":\"10.1016/j.stemcr.2024.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Defective skeletal muscle regeneration is often accompanied by fibrosis. Fibroblast/adipose progenitors (FAPs) are important in these processes, however, the regulation of FAP fate decisions is unclear. Here, using inducible conditional knockout mice, we show that blocking mammalian Ste20-like kinases 1/2 (MST1/2) of FAPs prevented apoptosis and reduced interleukin-6 secretion in vivo and in vitro, which impaired myoblast proliferation and differentiation, as well as impaired muscle regeneration. Deletion of Mst1/2 increased co-localization of Yes-associated protein (YAP) with Smad2/3 in nuclei and promoted differentiation of FAPs toward myofibroblasts, resulting in excessive collagen deposition and skeletal muscle fibrosis. Meanwhile, inhibition of MST1/2 increased YAP/Transcriptional co-activator with PDZ-binding motif activation, which promoted activation of the WNT/β-catenin pathway and impaired the differentiation of FAPs toward adipocytes. These results reveal a new mechanism for MST1/2 action in disrupted skeletal muscle regeneration and fibrosis via regulation of FAP apoptosis and differentiation. MST1/2 is a potential therapeutic target for the treatment of some myopathies.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"501-514\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.02.010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.02.010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
MST1/2 regulates fibro/adipogenic progenitor fate decisions in skeletal muscle regeneration.
Defective skeletal muscle regeneration is often accompanied by fibrosis. Fibroblast/adipose progenitors (FAPs) are important in these processes, however, the regulation of FAP fate decisions is unclear. Here, using inducible conditional knockout mice, we show that blocking mammalian Ste20-like kinases 1/2 (MST1/2) of FAPs prevented apoptosis and reduced interleukin-6 secretion in vivo and in vitro, which impaired myoblast proliferation and differentiation, as well as impaired muscle regeneration. Deletion of Mst1/2 increased co-localization of Yes-associated protein (YAP) with Smad2/3 in nuclei and promoted differentiation of FAPs toward myofibroblasts, resulting in excessive collagen deposition and skeletal muscle fibrosis. Meanwhile, inhibition of MST1/2 increased YAP/Transcriptional co-activator with PDZ-binding motif activation, which promoted activation of the WNT/β-catenin pathway and impaired the differentiation of FAPs toward adipocytes. These results reveal a new mechanism for MST1/2 action in disrupted skeletal muscle regeneration and fibrosis via regulation of FAP apoptosis and differentiation. MST1/2 is a potential therapeutic target for the treatment of some myopathies.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.