支持管理实践的贝叶斯网络:基于文献的多元视角

Fernando Juliani, Carlos Dias Maciel
{"title":"支持管理实践的贝叶斯网络:基于文献的多元视角","authors":"Fernando Juliani,&nbsp;Carlos Dias Maciel","doi":"10.1016/j.jjimei.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>Bayesian network is a probabilistic graphical model within machine learning that supports decision-making under conditions of uncertainty in different domains. Although the scientific literature has increasingly addressed the implementation of Bayesian networks to support management practices (BNM), a thorough review is currently lacking. This bibliometric review investigates the transformative potential of Bayesian networks in reshaping decision-making paradigms across multidisciplinary domains. The knowledge set findings reveal a predominant focus on risk management within the Engineering domain; the scientific openings involve significant progress in both theoretical frameworks and practical applications across Computer Science, Engineering, Medicine, and Environmental Science; and research trends indicate a progressive BNM within Engineering and Medicine, contrasting with a decline in innovative studies related to Computer Science. This study acts as a catalyst, propelling inventive BNM applications and fostering interdisciplinary advancements. It lays a foundation for pioneering BNM strategies.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 1","pages":"Article 100231"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266709682400020X/pdfft?md5=cfa883fb3796fbc119ec6c29998728d2&pid=1-s2.0-S266709682400020X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian networks supporting management practices: A multifaceted perspective based on the literature\",\"authors\":\"Fernando Juliani,&nbsp;Carlos Dias Maciel\",\"doi\":\"10.1016/j.jjimei.2024.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bayesian network is a probabilistic graphical model within machine learning that supports decision-making under conditions of uncertainty in different domains. Although the scientific literature has increasingly addressed the implementation of Bayesian networks to support management practices (BNM), a thorough review is currently lacking. This bibliometric review investigates the transformative potential of Bayesian networks in reshaping decision-making paradigms across multidisciplinary domains. The knowledge set findings reveal a predominant focus on risk management within the Engineering domain; the scientific openings involve significant progress in both theoretical frameworks and practical applications across Computer Science, Engineering, Medicine, and Environmental Science; and research trends indicate a progressive BNM within Engineering and Medicine, contrasting with a decline in innovative studies related to Computer Science. This study acts as a catalyst, propelling inventive BNM applications and fostering interdisciplinary advancements. It lays a foundation for pioneering BNM strategies.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 1\",\"pages\":\"Article 100231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266709682400020X/pdfft?md5=cfa883fb3796fbc119ec6c29998728d2&pid=1-s2.0-S266709682400020X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266709682400020X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266709682400020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯网络是机器学习中的一种概率图形模型,支持不同领域不确定条件下的决策。尽管科学文献越来越多地论述如何利用贝叶斯网络支持管理实践(BNM),但目前还缺乏全面的综述。本文献综述研究了贝叶斯网络在重塑多学科领域决策范式方面的变革潜力。知识集的研究结果表明,贝叶斯网络主要侧重于工程领域的风险管理;科学开放涉及计算机科学、工程学、医学和环境科学领域在理论框架和实际应用方面的重大进展;研究趋势表明,工程学和医学领域的贝叶斯网络管理在不断进步,而与计算机科学相关的创新研究却在减少。本研究是一种催化剂,它推动了富有创造性的 BNM 应用,促进了跨学科进步。它为开创性的 BNM 战略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian networks supporting management practices: A multifaceted perspective based on the literature

Bayesian network is a probabilistic graphical model within machine learning that supports decision-making under conditions of uncertainty in different domains. Although the scientific literature has increasingly addressed the implementation of Bayesian networks to support management practices (BNM), a thorough review is currently lacking. This bibliometric review investigates the transformative potential of Bayesian networks in reshaping decision-making paradigms across multidisciplinary domains. The knowledge set findings reveal a predominant focus on risk management within the Engineering domain; the scientific openings involve significant progress in both theoretical frameworks and practical applications across Computer Science, Engineering, Medicine, and Environmental Science; and research trends indicate a progressive BNM within Engineering and Medicine, contrasting with a decline in innovative studies related to Computer Science. This study acts as a catalyst, propelling inventive BNM applications and fostering interdisciplinary advancements. It lays a foundation for pioneering BNM strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1