MFFNet:用于无人机红外物体探测的轻量级多特征融合网络

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-03-29 DOI:10.1016/j.ejrs.2024.03.001
Yunlei Chen , Ziyan Liu , Lihui Zhang , Yingyu Wu , Qian Zhang , Xuhui Zheng
{"title":"MFFNet:用于无人机红外物体探测的轻量级多特征融合网络","authors":"Yunlei Chen ,&nbsp;Ziyan Liu ,&nbsp;Lihui Zhang ,&nbsp;Yingyu Wu ,&nbsp;Qian Zhang ,&nbsp;Xuhui Zheng","doi":"10.1016/j.ejrs.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>In light of issues such as unnoticeable texture features and limited resolution of infrared image objects, a lightweight multi-scale feature fusion method for UAV infrared object recognition is presented to enhance the performance of UAVs carrying intelligent devices to detect infrared objects. By changing the anchorless frame strategy of the YOLOX method, a lightweight Multi-Feature Fusion Network (MFFNet) for UAV IR image object recognition is proposed. First, a lightweight backbone network is built using ShuffleNetv2_block, spatial pyramid pooling, and other modules to reduce the network's number of parameters and inference time while maintaining its capacity to extract features. Second, we develop a multi-feature fusion module to improve the detection capabilities of the model for IR objects by fusing the local features and the overall characteristics of IR objects since the texture features of IR objects are challenging to employ, but the boundary information is evident. The boundary frame regression loss is then optimized using SIoU by comparing the predicted frame to the actual frame in terms of angle, distance, shape, and IoU (Intersection over Union), which forces the model to reach the optimum predicted box more quickly.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 2","pages":"Pages 268-276"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000218/pdfft?md5=85d30684c98bfb92e8845e2acca9c06c&pid=1-s2.0-S1110982324000218-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MFFNet: A lightweight multi-feature fusion network for UAV infrared object detection\",\"authors\":\"Yunlei Chen ,&nbsp;Ziyan Liu ,&nbsp;Lihui Zhang ,&nbsp;Yingyu Wu ,&nbsp;Qian Zhang ,&nbsp;Xuhui Zheng\",\"doi\":\"10.1016/j.ejrs.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In light of issues such as unnoticeable texture features and limited resolution of infrared image objects, a lightweight multi-scale feature fusion method for UAV infrared object recognition is presented to enhance the performance of UAVs carrying intelligent devices to detect infrared objects. By changing the anchorless frame strategy of the YOLOX method, a lightweight Multi-Feature Fusion Network (MFFNet) for UAV IR image object recognition is proposed. First, a lightweight backbone network is built using ShuffleNetv2_block, spatial pyramid pooling, and other modules to reduce the network's number of parameters and inference time while maintaining its capacity to extract features. Second, we develop a multi-feature fusion module to improve the detection capabilities of the model for IR objects by fusing the local features and the overall characteristics of IR objects since the texture features of IR objects are challenging to employ, but the boundary information is evident. The boundary frame regression loss is then optimized using SIoU by comparing the predicted frame to the actual frame in terms of angle, distance, shape, and IoU (Intersection over Union), which forces the model to reach the optimum predicted box more quickly.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"27 2\",\"pages\":\"Pages 268-276\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000218/pdfft?md5=85d30684c98bfb92e8845e2acca9c06c&pid=1-s2.0-S1110982324000218-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000218\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000218","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

针对红外图像物体纹理特征不明显、分辨率有限等问题,提出了一种用于无人机红外物体识别的轻量级多尺度特征融合方法,以提高搭载智能设备的无人机探测红外物体的性能。通过改变 YOLOX 方法的无锚帧策略,提出了一种用于无人机红外图像物体识别的轻量级多特征融合网络(MFFNet)。首先,利用 ShuffleNetv2_block、空间金字塔池化等模块构建了轻量级骨干网络,在保持特征提取能力的同时减少了网络的参数数量和推理时间。其次,我们开发了一个多特征融合模块,通过融合红外物体的局部特征和整体特征来提高模型对红外物体的检测能力,因为红外物体的纹理特征很难利用,但边界信息却很明显。然后利用 SIoU 对边界框回归损失进行优化,将预测框与实际框在角度、距离、形状和 IoU(Intersection over Union)方面进行比较,从而迫使模型更快地达到最佳预测框。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFFNet: A lightweight multi-feature fusion network for UAV infrared object detection

In light of issues such as unnoticeable texture features and limited resolution of infrared image objects, a lightweight multi-scale feature fusion method for UAV infrared object recognition is presented to enhance the performance of UAVs carrying intelligent devices to detect infrared objects. By changing the anchorless frame strategy of the YOLOX method, a lightweight Multi-Feature Fusion Network (MFFNet) for UAV IR image object recognition is proposed. First, a lightweight backbone network is built using ShuffleNetv2_block, spatial pyramid pooling, and other modules to reduce the network's number of parameters and inference time while maintaining its capacity to extract features. Second, we develop a multi-feature fusion module to improve the detection capabilities of the model for IR objects by fusing the local features and the overall characteristics of IR objects since the texture features of IR objects are challenging to employ, but the boundary information is evident. The boundary frame regression loss is then optimized using SIoU by comparing the predicted frame to the actual frame in terms of angle, distance, shape, and IoU (Intersection over Union), which forces the model to reach the optimum predicted box more quickly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images New insights into the Menyuan Ms6.9 Earthquake, China: 3D slip inversion and fault modeling based on InSAR remote sensing approach Identifying water-lubricated faults in the vicinity of a dam Cot-DCN-YOLO: Self-attention-enhancing YOLOv8s for detecting garbage bins in urban street view images Fusing satellite imagery and ground geochemical data to map alteration zones for gold exploration in western Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1