KrF 激光驱动冲击管:实现和首次实验

V.D. Zvorykin, P.V. Veliev, I.A. Kozin, N.V. Morozov, E.V. Parkevich, K.T. Smaznova, N.N. Ustinovskii, A.V. Shutov
{"title":"KrF 激光驱动冲击管:实现和首次实验","authors":"V.D. Zvorykin,&nbsp;P.V. Veliev,&nbsp;I.A. Kozin,&nbsp;N.V. Morozov,&nbsp;E.V. Parkevich,&nbsp;K.T. Smaznova,&nbsp;N.N. Ustinovskii,&nbsp;A.V. Shutov","doi":"10.1016/j.fpp.2024.100046","DOIUrl":null,"url":null,"abstract":"<div><p>We report on the first implementation of a miniature laser-driven shock tube (LDST) of 5 × 5 mm cross section and 50-mm length for generating and studying strong shock waves (SW) and hypersonic gas flows with <em>M</em> &gt; 10. Operation of the LDST is based on the acceleration of a thin CH-film by ablative plasma pressure produced when the film is irradiated by high-energy UV pulse of the GARPUN KrF laser (100 J &amp; 100-ns). The film serves as a piston that pushes a SW in the gas filling the LDST. An optical system based on a multi-element prism raster provides focusing of KrF laser beam into 7 × 7 mm square spot with 100 J/cm<sup>2</sup> energy fluence (1 GW/cm<sup>2</sup> intensity) with inhomogeneity ∼3 % across the LDST aperture. It is expected that the LDST with KrF laser driver can be an effective tool for studying hydrodynamic phenomena, such as hydrodynamic instabilities and transition to a turbulence, hypersonic gas flow around bodies, reflection and cumulation of strong SW.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000116/pdfft?md5=221386dde950270064ca1f0d9d3b44e3&pid=1-s2.0-S2772828524000116-main.pdf","citationCount":"0","resultStr":"{\"title\":\"KrF laser-driven shock tube: Realization and first experiments\",\"authors\":\"V.D. Zvorykin,&nbsp;P.V. Veliev,&nbsp;I.A. Kozin,&nbsp;N.V. Morozov,&nbsp;E.V. Parkevich,&nbsp;K.T. Smaznova,&nbsp;N.N. Ustinovskii,&nbsp;A.V. Shutov\",\"doi\":\"10.1016/j.fpp.2024.100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report on the first implementation of a miniature laser-driven shock tube (LDST) of 5 × 5 mm cross section and 50-mm length for generating and studying strong shock waves (SW) and hypersonic gas flows with <em>M</em> &gt; 10. Operation of the LDST is based on the acceleration of a thin CH-film by ablative plasma pressure produced when the film is irradiated by high-energy UV pulse of the GARPUN KrF laser (100 J &amp; 100-ns). The film serves as a piston that pushes a SW in the gas filling the LDST. An optical system based on a multi-element prism raster provides focusing of KrF laser beam into 7 × 7 mm square spot with 100 J/cm<sup>2</sup> energy fluence (1 GW/cm<sup>2</sup> intensity) with inhomogeneity ∼3 % across the LDST aperture. It is expected that the LDST with KrF laser driver can be an effective tool for studying hydrodynamic phenomena, such as hydrodynamic instabilities and transition to a turbulence, hypersonic gas flow around bodies, reflection and cumulation of strong SW.</p></div>\",\"PeriodicalId\":100558,\"journal\":{\"name\":\"Fundamental Plasma Physics\",\"volume\":\"10 \",\"pages\":\"Article 100046\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000116/pdfft?md5=221386dde950270064ca1f0d9d3b44e3&pid=1-s2.0-S2772828524000116-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次报道了一种横截面为 5 × 5 毫米、长度为 50 毫米的微型激光驱动冲击管(LDST),用于产生和研究强冲击波(SW)以及 M > 10 的高超音速气体流。 LDST 的运行基于薄膜 CH 膜在 GARPUN KrF 激光高能紫外脉冲(100 J & 100-ns)照射下产生的烧蚀等离子压力的加速。薄膜就像一个活塞,推动着充入 LDST 气体中的 SW。基于多元素棱镜光栅的光学系统可将 KrF 激光束聚焦到 7 × 7 mm 的正方形光斑中,能量通量为 100 J/cm2(强度为 1 GW/cm2),整个 LDST 孔径的不均匀性为 ∼ 3 %。预计带有 KrF 激光驱动器的 LDST 可以成为研究流体力学现象的有效工具,例如流体力学不稳定性和向湍流的过渡、物体周围的高超音速气体流动、强 SW 的反射和累积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KrF laser-driven shock tube: Realization and first experiments

We report on the first implementation of a miniature laser-driven shock tube (LDST) of 5 × 5 mm cross section and 50-mm length for generating and studying strong shock waves (SW) and hypersonic gas flows with M > 10. Operation of the LDST is based on the acceleration of a thin CH-film by ablative plasma pressure produced when the film is irradiated by high-energy UV pulse of the GARPUN KrF laser (100 J & 100-ns). The film serves as a piston that pushes a SW in the gas filling the LDST. An optical system based on a multi-element prism raster provides focusing of KrF laser beam into 7 × 7 mm square spot with 100 J/cm2 energy fluence (1 GW/cm2 intensity) with inhomogeneity ∼3 % across the LDST aperture. It is expected that the LDST with KrF laser driver can be an effective tool for studying hydrodynamic phenomena, such as hydrodynamic instabilities and transition to a turbulence, hypersonic gas flow around bodies, reflection and cumulation of strong SW.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial board Frontiers of plasma physics and technology 2023 Corrigendum regarding missing disclaimer statements in previously published articles Physicochemical properties and antimicrobial efficacy of argon cold atmospheric pressure plasma jet activated liquids – a comparative study Early applications of Neural Networks to plasma science: Architectures, solutions, and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1