{"title":"ROSIC:通过开源即时通讯平台加强机器人控制的安全性和可及性","authors":"Rasoul Sadeghian, Shahrooz Shahin, Sina Sareh","doi":"10.1049/csy2.12112","DOIUrl":null,"url":null,"abstract":"<p>Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely. The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication (ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms, we have developed middleware that establishes a secure and efficient communication system over the Internet. By using instant messaging as the communication interface between users and robots, ROSIC caters to non-technical users, making it easier for them to control robots. The architecture of ROSIC enables various scenarios for robot control, including one user controlling multiple robots, multiple users controlling one robot, multiple robots controlled by multiple users, and one user controlling one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and commands. Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature, robust encryption, compatibility across multiple platforms and interactive communication capabilities through channels and groups. Notably, the ROSIC is designed to communicate effectively with robot operating system (ROS)-based robots to enhance our ability to control them remotely.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12112","citationCount":"0","resultStr":"{\"title\":\"ROSIC: Enhancing secure and accessible robot control through open-source instant messaging platforms\",\"authors\":\"Rasoul Sadeghian, Shahrooz Shahin, Sina Sareh\",\"doi\":\"10.1049/csy2.12112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely. The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication (ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms, we have developed middleware that establishes a secure and efficient communication system over the Internet. By using instant messaging as the communication interface between users and robots, ROSIC caters to non-technical users, making it easier for them to control robots. The architecture of ROSIC enables various scenarios for robot control, including one user controlling multiple robots, multiple users controlling one robot, multiple robots controlled by multiple users, and one user controlling one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and commands. Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature, robust encryption, compatibility across multiple platforms and interactive communication capabilities through channels and groups. Notably, the ROSIC is designed to communicate effectively with robot operating system (ROS)-based robots to enhance our ability to control them remotely.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
ROSIC: Enhancing secure and accessible robot control through open-source instant messaging platforms
Ensuring secure communication and seamless accessibility remains a primary challenge in controlling robots remotely. The authors propose a novel approach that leverages open-source instant messaging platforms to overcome the complexities and reduce costs associated with implementing a secure and user-centred communication system for remote robot control named Robot Control System using Instant Communication (ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end encryption and cross-platform support inherent in the majority of instant messenger platforms, we have developed middleware that establishes a secure and efficient communication system over the Internet. By using instant messaging as the communication interface between users and robots, ROSIC caters to non-technical users, making it easier for them to control robots. The architecture of ROSIC enables various scenarios for robot control, including one user controlling multiple robots, multiple users controlling one robot, multiple robots controlled by multiple users, and one user controlling one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling them to interoperate and function collaboratively as a swarm system by providing a unified communication platform that allows for seamless exchange of data and commands. Telegram was specifically chosen as the instant messaging platform by the authors due to its open-source nature, robust encryption, compatibility across multiple platforms and interactive communication capabilities through channels and groups. Notably, the ROSIC is designed to communicate effectively with robot operating system (ROS)-based robots to enhance our ability to control them remotely.