{"title":"与天敌互动时产生的底物振动改变了蚜虫的探测行为","authors":"Caterina Zippari, Rachele Nieri, Zeinab Hamouche, Abderrahmane Boucherf, Giovanni Tamburini, Gianfranco Anfora, Vincenzo Verrastro, Valerio Mazzoni, Daniele Cornara","doi":"10.1007/s10340-024-01761-6","DOIUrl":null,"url":null,"abstract":"<p>The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid <i>Myzus persicae</i> and its antagonists, the parasitoid wasp <i>Aphidius colemani</i> and the ladybug <i>Adalia bipunctata.</i> Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate-borne vibrations produced during the interaction with natural enemies alter aphids probing behavior\",\"authors\":\"Caterina Zippari, Rachele Nieri, Zeinab Hamouche, Abderrahmane Boucherf, Giovanni Tamburini, Gianfranco Anfora, Vincenzo Verrastro, Valerio Mazzoni, Daniele Cornara\",\"doi\":\"10.1007/s10340-024-01761-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid <i>Myzus persicae</i> and its antagonists, the parasitoid wasp <i>Aphidius colemani</i> and the ladybug <i>Adalia bipunctata.</i> Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01761-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01761-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Substrate-borne vibrations produced during the interaction with natural enemies alter aphids probing behavior
The “ecology of fear”, i.e., physiological and behavioral alterations displayed by pests in response to predation risk, has recently been proposed as a sustainable alternative to chemicals for pest control. However, the development of such a strategy requires a detailed understanding of the signals and cues underlying the pest-antagonist interaction and eliciting the prey behavioral alteration. Here, we characterized the substrate-borne vibrations produced during the interaction between the green peach aphid Myzus persicae and its antagonists, the parasitoid wasp Aphidius colemani and the ladybug Adalia bipunctata. Thereafter, coupling the electrical penetration graph (EPG) with a stimulus controller, we evaluated whether the playback of the vibrations, alone and in combination with the alarm pheromone, impacted aphid probing behavior and interaction with the host plant. Aphids responded to vibrations exhibiting longer non-probing, shorter intracellular probes, i.e. the behavior through which the insect evaluates host plant quality, delay in accessing the phloem vessels and decrease of the frequency of phloem salivation events. In contrast, on plants treated with the alarm pheromone, insects displayed longer intracellular probes. We hypothesize that the alarm pheromone, signaling a distant threat, might induce a careful evaluation of the host plant in order to decide the magnitude of the reaction. On the other hand, vibrations might indicate a closely approaching threat pushing the aphid to rush the host evaluation process and the whole feeding process. The possible repercussion of the behavioral alterations observed on the dynamics of aphid-borne plant virus transmission is also discussed.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.