单细胞双聚类用于检测注意力缺失症进展过程中细胞特异性转录组扰动。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-04-22 Epub Date: 2024-03-29 DOI:10.1016/j.crmeth.2024.100742
Yuqiao Gong, Jingsi Xu, Maoying Wu, Ruitian Gao, Jianle Sun, Zhangsheng Yu, Yue Zhang
{"title":"单细胞双聚类用于检测注意力缺失症进展过程中细胞特异性转录组扰动。","authors":"Yuqiao Gong, Jingsi Xu, Maoying Wu, Ruitian Gao, Jianle Sun, Zhangsheng Yu, Yue Zhang","doi":"10.1016/j.crmeth.2024.100742","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045878/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell biclustering for cell-specific transcriptomic perturbation detection in AD progression.\",\"authors\":\"Yuqiao Gong, Jingsi Xu, Maoying Wu, Ruitian Gao, Jianle Sun, Zhangsheng Yu, Yue Zhang\",\"doi\":\"10.1016/j.crmeth.2024.100742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的发病机制涉及不同细胞类型的复杂基因调控变化。为了帮助破译这种复杂性,我们引入了单细胞贝叶斯双聚类(scBC),这是一种在 scRNA 和 snRNA-seq 数据中识别细胞特异性基因网络生物标记物的框架。通过双聚类,scBC 能够在单细胞水平上分析功能基因模块的扰动。将 scBC 框架应用于 AD snRNA-seq 数据可揭示不同细胞群中基因模块的扰动,并揭示 AD 进展过程中基因与细胞的相关性。值得注意的是,我们的方法有助于克服单细胞数据分析中常见的挑战,包括批次效应和丢失事件。结合先验知识还能使该框架产生更具生物学解释性的结果。对模拟数据集和真实世界数据集的比较分析表明,与其他最先进的双聚类方法相比,我们的方法既精确又稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell biclustering for cell-specific transcriptomic perturbation detection in AD progression.

The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1