利用异质空间面板向量模型对超高拱坝性能进行健康诊断

IF 3.7 Q1 WATER RESOURCES Water science and engineering Pub Date : 2024-02-28 DOI:10.1016/j.wse.2024.02.003
Er-feng Zhao , Xin Li , Chong-shi Gu
{"title":"利用异质空间面板向量模型对超高拱坝性能进行健康诊断","authors":"Er-feng Zhao ,&nbsp;Xin Li ,&nbsp;Chong-shi Gu","doi":"10.1016/j.wse.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000255/pdfft?md5=4f4632dcc8091681a18a89d50976098f&pid=1-s2.0-S1674237024000255-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model\",\"authors\":\"Er-feng Zhao ,&nbsp;Xin Li ,&nbsp;Chong-shi Gu\",\"doi\":\"10.1016/j.wse.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674237024000255/pdfft?md5=4f4632dcc8091681a18a89d50976098f&pid=1-s2.0-S1674237024000255-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237024000255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

目前,中国已建和在建的超高拱坝有十余座。安全控制对这些大坝的长期运行至关重要。本研究采用柔性系数和塑性补能规范来评估拱坝的结构安全。研究进行了全面分析,重点关注了在描述中国小湾拱坝结构行为时传统方法之间的差异。随后,探讨了小湾拱坝测量性能的时空特征,包括周期性、收敛性和时间效应特征。这些发现揭示了主要因素的支配机制。此外,考虑到影响拱坝安全和性能的共性因素和特殊因素,建立了异质性空间面板向量模型。该模型旨在全面说明整个结构和局部区域之间的空间异质性,引入特定效应量来描述局部变形差异。最终,提出的模型被应用于小湾拱坝,准确量化了大坝性能的时空异质性。此外,还合理解释了大坝不同部位环境荷载效应的时空分布特征。对模型预测的验证提高了模型的可信度,从而为小湾大坝未来的长期运行制定了健康诊断标准。研究结果不仅提高了对超高拱坝性能的预测能力和及时控制能力,也为评估工程治理措施的有效性提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model

Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
期刊最新文献
Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols Influence of breach parameter models on hazard classification of off-stream reservoirs Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment: Response surface methodology modelling, artificial intelligence, and machine learning-based optimisation approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1