利用基于配体的虚拟筛选、分子对接、分子动力学和 MM-GBSA 计算,确定并表征有前途的驱动蛋白纺锤体小分子抑制剂。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Computer-Aided Molecular Design Pub Date : 2024-04-01 DOI:10.1007/s10822-024-00553-5
Samia A Elseginy
{"title":"利用基于配体的虚拟筛选、分子对接、分子动力学和 MM-GBSA 计算,确定并表征有前途的驱动蛋白纺锤体小分子抑制剂。","authors":"Samia A Elseginy","doi":"10.1007/s10822-024-00553-5","DOIUrl":null,"url":null,"abstract":"<p><p>The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982093/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying and characterising promising small molecule inhibitors of kinesin spindle protein using ligand-based virtual screening, molecular docking, molecular dynamics and MM‑GBSA calculations.\",\"authors\":\"Samia A Elseginy\",\"doi\":\"10.1007/s10822-024-00553-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.</p>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982093/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10822-024-00553-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10822-024-00553-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

驱动蛋白纺锤体蛋白(Eg5)是一种有丝分裂蛋白,在有丝分裂阶段双极纺锤体的形成过程中起着至关重要的作用。Eg5 蛋白控制着有丝分裂过程中染色体的分离,因此成为癌症治疗的一个重要靶点。在这项研究中,我们以新型异构口袋(α4/α6/L11)为目标,为 Eg5 抑制剂寻找新型支架。我们采用配体虚拟筛选和分子对接(MOE 和 AutoDock)两种方法,对商业化合物库进行了广泛的计算技术筛选。我们发现化合物 8-(3-(1H-咪唑-1-基丙基氨基)-3-甲基-7-((萘-3-基)甲基)-1H-嘌呤-2, 6 (3H, 7H)-二酮(化合物 5)是 Eg5 抑制剂的新型支架。该化合物对癌细胞 Eg5 ATPase 的抑制作用为 2.37 ± 0.15 µM。分子动力学模拟显示,所发现的化合物在受体的异构口袋(α4/α6/L11)中形成了稳定的相互作用,表明其具有作为新型 Eg5 抑制剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying and characterising promising small molecule inhibitors of kinesin spindle protein using ligand-based virtual screening, molecular docking, molecular dynamics and MM‑GBSA calculations.

The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
期刊最新文献
De novo drug design through gradient-based regularized search in information-theoretically controlled latent space. Computational design and experimental confirmation of a disulfide-stapled YAP helixα1-trap derived from TEAD4 helical hairpin to selectively capture YAP α1-helix with potent antitumor activity. Holistic in silico developability assessment of novel classes of small proteins using publicly available sequence-based predictors. FitScore: a fast machine learning-based score for 3D virtual screening enrichment. Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1