设计可提高生物利用率的呋塞米纳米颗粒口服片剂

IF 1.6 4区 农林科学 Q3 CHEMISTRY, APPLIED Journal of oleo science Pub Date : 2024-01-01 DOI:10.5650/jos.ess23229
Noriaki Nagai, Fumihiko Ogata, Reita Kadowaki, Saori Deguchi, Hiroko Otake, Yosuke Nakazawa, Manju Misra, Naohito Kawasaki
{"title":"设计可提高生物利用率的呋塞米纳米颗粒口服片剂","authors":"Noriaki Nagai, Fumihiko Ogata, Reita Kadowaki, Saori Deguchi, Hiroko Otake, Yosuke Nakazawa, Manju Misra, Naohito Kawasaki","doi":"10.5650/jos.ess23229","DOIUrl":null,"url":null,"abstract":"<p><p>The solubility and permeability of the Biopharmaceutics Classification System (BCS) class IV drugs, such as furosemide (FUR), are low. Thus, the oral bioavailability of these drugs needs to be augmented. Here, we aimed to design orally disintegrating tablets containing FUR nanoparticles to improve bioavailability after oral administration. The FUR nanoparticles were generated by bead-milling in water containing 0.5% methylcellulose and 0.5% 2-hydroxypropyl-β-cyclodextrin (w/w%). Particle size was approximately 47-350 nm (mean particle size, 188 nm). An orally disintegrating tablet (FUR-NP tablet) comprising FUR nanoparticles (1%) was successfully produced by employing suspensions outlined above that incorporated additives (4% D-mannitol, 0.4% polyvinylpyrrolidone, and 16% gum Arabic, w/w%), followed by freeze-drying. The FUR-NP tablet disaggregated after only 5 s in water, liberating nano-sized FUR particles (172 nm). Experiments using rats showed the absorption of the FUR-NP tablet was significantly improved by comparison with a FUR tablet containing microparticles. In summary, the orally disintegrating tablet containing FUR nanoparticles markedly enhanced the bioavailability of FUR. We anticipate this formulation will also improve the bioavailability of other BCS class IV drugs.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Oral Tablet Containing Furosemide Nanoparticles with Elevated Bioavailability.\",\"authors\":\"Noriaki Nagai, Fumihiko Ogata, Reita Kadowaki, Saori Deguchi, Hiroko Otake, Yosuke Nakazawa, Manju Misra, Naohito Kawasaki\",\"doi\":\"10.5650/jos.ess23229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The solubility and permeability of the Biopharmaceutics Classification System (BCS) class IV drugs, such as furosemide (FUR), are low. Thus, the oral bioavailability of these drugs needs to be augmented. Here, we aimed to design orally disintegrating tablets containing FUR nanoparticles to improve bioavailability after oral administration. The FUR nanoparticles were generated by bead-milling in water containing 0.5% methylcellulose and 0.5% 2-hydroxypropyl-β-cyclodextrin (w/w%). Particle size was approximately 47-350 nm (mean particle size, 188 nm). An orally disintegrating tablet (FUR-NP tablet) comprising FUR nanoparticles (1%) was successfully produced by employing suspensions outlined above that incorporated additives (4% D-mannitol, 0.4% polyvinylpyrrolidone, and 16% gum Arabic, w/w%), followed by freeze-drying. The FUR-NP tablet disaggregated after only 5 s in water, liberating nano-sized FUR particles (172 nm). Experiments using rats showed the absorption of the FUR-NP tablet was significantly improved by comparison with a FUR tablet containing microparticles. In summary, the orally disintegrating tablet containing FUR nanoparticles markedly enhanced the bioavailability of FUR. We anticipate this formulation will also improve the bioavailability of other BCS class IV drugs.</p>\",\"PeriodicalId\":16626,\"journal\":{\"name\":\"Journal of oleo science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of oleo science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5650/jos.ess23229\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess23229","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

呋塞米(FUR)等生物制药分类系统(BCS)第四类药物的溶解度和渗透性都很低。因此,需要提高这些药物的口服生物利用度。在此,我们旨在设计含有 FUR 纳米颗粒的口腔崩解片,以提高口服后的生物利用度。FUR 纳米粒子是在含有 0.5% 甲基纤维素和 0.5% 2-hydroxypropyl-β-cyclodextrin (w/w%)的水中通过珠磨制成的。粒径约为 47-350 纳米(平均粒径为 188 纳米)。通过使用含有添加剂(4% D-甘露糖醇、0.4% 聚乙烯吡咯烷酮和 16% 阿拉伯树胶,重量百分比)的上述悬浮液,然后进行冷冻干燥,成功制成了含有 FUR 纳米颗粒(1%)的口腔崩解片(FUR-NP 片)。FUR-NP 药片在水中仅停留 5 秒钟就分解了,释放出纳米级的 FUR 颗粒(172 纳米)。大鼠实验表明,与含有微粒的 FUR 药片相比,FUR-NP 药片的吸收率明显提高。总之,含有 FUR 纳米颗粒的口腔崩解片剂明显提高了 FUR 的生物利用度。我们预计这种制剂还将提高其他 BCS IV 类药物的生物利用度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an Oral Tablet Containing Furosemide Nanoparticles with Elevated Bioavailability.

The solubility and permeability of the Biopharmaceutics Classification System (BCS) class IV drugs, such as furosemide (FUR), are low. Thus, the oral bioavailability of these drugs needs to be augmented. Here, we aimed to design orally disintegrating tablets containing FUR nanoparticles to improve bioavailability after oral administration. The FUR nanoparticles were generated by bead-milling in water containing 0.5% methylcellulose and 0.5% 2-hydroxypropyl-β-cyclodextrin (w/w%). Particle size was approximately 47-350 nm (mean particle size, 188 nm). An orally disintegrating tablet (FUR-NP tablet) comprising FUR nanoparticles (1%) was successfully produced by employing suspensions outlined above that incorporated additives (4% D-mannitol, 0.4% polyvinylpyrrolidone, and 16% gum Arabic, w/w%), followed by freeze-drying. The FUR-NP tablet disaggregated after only 5 s in water, liberating nano-sized FUR particles (172 nm). Experiments using rats showed the absorption of the FUR-NP tablet was significantly improved by comparison with a FUR tablet containing microparticles. In summary, the orally disintegrating tablet containing FUR nanoparticles markedly enhanced the bioavailability of FUR. We anticipate this formulation will also improve the bioavailability of other BCS class IV drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of oleo science
Journal of oleo science CHEMISTRY, APPLIED-FOOD SCIENCE & TECHNOLOGY
CiteScore
3.20
自引率
6.70%
发文量
173
审稿时长
3 months
期刊介绍: The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils such as related food products, detergents, natural products, petroleum products, lipids and related proteins and sugars. The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/ sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. Monitoring of Fatty Acid Derivatives and Vegetable Oils by the Quartz Crystal Microbalance. NaturalEssential Oils: A Promising Therapy Way for Treating Ischemic Stroke. Studies on the Enzymatic Synthesis and Antioxidant Properties of Phenolic Acid Glycerols. Beneficial Effects of a Formulated Supplement of Ascidiacea (Halocynthia-roretzi)-derived Plasmalogen and Tuna-derived Elastin on Memory Function in Elderly Japanese Subjects; A Randomized, Double-blind, Placebo-controlled Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1