{"title":"从灰色丛林鸡(Gallus sonneratii)到家鸡(Gallus gallus domesticus)的重大基因组导入。","authors":"Xiurong Zhao, Junhui Wen, Xinye Zhang, Jinxin Zhang, Tao Zhu, Huie Wang, Weifang Yang, Guomin Cao, Wenjie Xiong, Yong Liu, Changqing Qu, Zhonghua Ning, Lujiang Qu","doi":"10.1186/s40104-024-01006-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens.</p><p><strong>Results: </strong>We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.</p><p><strong>Conclusions: </strong>In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Significant genomic introgression from grey junglefowl (Gallus sonneratii) to domestic chickens (Gallus gallus domesticus).\",\"authors\":\"Xiurong Zhao, Junhui Wen, Xinye Zhang, Jinxin Zhang, Tao Zhu, Huie Wang, Weifang Yang, Guomin Cao, Wenjie Xiong, Yong Liu, Changqing Qu, Zhonghua Ning, Lujiang Qu\",\"doi\":\"10.1186/s40104-024-01006-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens.</p><p><strong>Results: </strong>We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.</p><p><strong>Conclusions: </strong>In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-024-01006-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-024-01006-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Significant genomic introgression from grey junglefowl (Gallus sonneratii) to domestic chickens (Gallus gallus domesticus).
Background: Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens.
Results: We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens.
Conclusions: In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.