{"title":"生物制药生产中药品效力目标评估的数字化应用。","authors":"Darrick Shen, Shyam Panjwani, Konstantinos Spetsieris","doi":"10.1002/btpr.3461","DOIUrl":null,"url":null,"abstract":"<p>Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3461","citationCount":"0","resultStr":"{\"title\":\"Digital application for drug product potency target evaluation in biopharmaceutical manufacturing\",\"authors\":\"Darrick Shen, Shyam Panjwani, Konstantinos Spetsieris\",\"doi\":\"10.1002/btpr.3461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3461\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3461\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3461","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Digital application for drug product potency target evaluation in biopharmaceutical manufacturing
Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.