从大脑图像中自动提取动脉输入功能,用于参数 PET 研究。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-01 DOI:10.1186/s13550-024-01100-x
Hamed Moradi, Rajat Vashistha, Soumen Ghosh, Kieran O'Brien, Amanda Hammond, Axel Rominger, Hasan Sari, Kuangyu Shi, Viktor Vegh, David Reutens
{"title":"从大脑图像中自动提取动脉输入功能,用于参数 PET 研究。","authors":"Hamed Moradi, Rajat Vashistha, Soumen Ghosh, Kieran O'Brien, Amanda Hammond, Axel Rominger, Hasan Sari, Kuangyu Shi, Viktor Vegh, David Reutens","doi":"10.1186/s13550-024-01100-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images.</p><p><strong>Results: </strong>Total body <sup>18</sup>F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07.</p><p><strong>Conclusions: </strong>Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated extraction of the arterial input function from brain images for parametric PET studies.\",\"authors\":\"Hamed Moradi, Rajat Vashistha, Soumen Ghosh, Kieran O'Brien, Amanda Hammond, Axel Rominger, Hasan Sari, Kuangyu Shi, Viktor Vegh, David Reutens\",\"doi\":\"10.1186/s13550-024-01100-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images.</p><p><strong>Results: </strong>Total body <sup>18</sup>F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07.</p><p><strong>Conclusions: </strong>Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13550-024-01100-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01100-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:动脉输入函数(AIF)的精确测量对参数 PET 研究至关重要,但 AIF 通常是通过侵入性动脉血采样获得的。有可能使用通过对大血池成像获得的图像衍生输入函数(IDIF),但由于视场中缺乏大血池,在标准视场扫描仪上进行的 PET 脑研究中,IDIF 测量具有挑战性。在此,我们介绍一种从脑图像估算AIF的新型自动方法:结果:12 名受试者的全身 18F-FDG PET 数据被分为模型调整组(n = 6)和验证组(n = 6)。我们利用基于小波的方法和无监督机器学习开发了一个 AIF 估计框架,与降主动脉的 IDIF 相比,该框架可区分动脉和静脉活动曲线。验证组中所有自动提取的 AIF 与降主动脉 IDIF 的形状相似。验证数据的平均曲线下误差和归一化均方根误差分别为- 1.59 ± 2.93% 和 0.17 ± 0.07:我们的自动 AIF 框架能从大脑图像中准确估算出 AIF。它减少了对操作员的依赖,有助于参数 PET 的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated extraction of the arterial input function from brain images for parametric PET studies.

Background: Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images.

Results: Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07.

Conclusions: Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Current Review on Nanophytomedicines in the Treatment of Oral Cancer: Recent Trends and Treatment Prospects. Recent Updates on Phytopharmaceuticals-Based Novel Phytosomal Systems and Their Clinical Trial Status: A Translational Perspective. [Corrigendum] Tripartite motif‑containing 11 regulates the proliferation and apoptosis of breast cancer cells. [Retracted] Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS‑mutated lung cancer cells. [Retracted] Stimulation of peroxisome proliferator‑activated receptor γ inhibits estrogen receptor α transcriptional activity in endometrial carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1