Niv Pencovich, Byron H Smith, Zachi I Attia, Francisco Lopez Jimenez, Andrew J Bentall, Carrie A Schinstock, Hasan A Khamash, Caroline C Jadlowiec, Tambi Jarmi, Shennen A Mao, Walter D Park, Tayyab S Diwan, Paul A Friedman, Mark D Stegall
{"title":"基于心电图的人工智能算法有助于预测肾移植后的长期死亡率。","authors":"Niv Pencovich, Byron H Smith, Zachi I Attia, Francisco Lopez Jimenez, Andrew J Bentall, Carrie A Schinstock, Hasan A Khamash, Caroline C Jadlowiec, Tambi Jarmi, Shennen A Mao, Walter D Park, Tayyab S Diwan, Paul A Friedman, Mark D Stegall","doi":"10.1097/TP.0000000000005023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT.</p><p><strong>Methods: </strong>We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data.</p><p><strong>Results: </strong>Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality ( P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751).</p><p><strong>Conclusions: </strong>The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiography-based Artificial Intelligence Algorithms Aid in Prediction of Long-term Mortality After Kidney Transplantation.\",\"authors\":\"Niv Pencovich, Byron H Smith, Zachi I Attia, Francisco Lopez Jimenez, Andrew J Bentall, Carrie A Schinstock, Hasan A Khamash, Caroline C Jadlowiec, Tambi Jarmi, Shennen A Mao, Walter D Park, Tayyab S Diwan, Paul A Friedman, Mark D Stegall\",\"doi\":\"10.1097/TP.0000000000005023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT.</p><p><strong>Methods: </strong>We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data.</p><p><strong>Results: </strong>Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality ( P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751).</p><p><strong>Conclusions: </strong>The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.</p>\",\"PeriodicalId\":23316,\"journal\":{\"name\":\"Transplantation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/TP.0000000000005023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Electrocardiography-based Artificial Intelligence Algorithms Aid in Prediction of Long-term Mortality After Kidney Transplantation.
Background: Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT.
Methods: We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data.
Results: Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality ( P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751).
Conclusions: The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.
期刊介绍:
The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year.
Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal.
Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed.
The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation.