多区域临床试验中的区域一致性评估。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-10-01 Epub Date: 2024-04-01 DOI:10.1080/10543406.2024.2330214
Gang Li, Hui Quan, Yining Wang
{"title":"多区域临床试验中的区域一致性评估。","authors":"Gang Li, Hui Quan, Yining Wang","doi":"10.1080/10543406.2024.2330214","DOIUrl":null,"url":null,"abstract":"<p><p>Multiregional clinical trials (MRCTs) have become a favored strategy for new drug development. The accurate evaluation of treatment effects across different regions is crucial for interpreting the results of MRCTs. Consistency between regional and overall results ensures the extrapolability of the overall conclusions to individual regions. While numerous statistical methods have been proposed for consistency assessment, a notable proportion necessitate a substantial escalation in sample size, particularly in scenarios involving more than four regions within MRCTs. This, paradoxically, undermines the fundamental intent of MRCTs. In addition, standardized statistical criteria for concluding consistency are yet to be established. In this paper, we develop further consistency assessment approaches in the framework of two multivariate likelihood ratio test-based methods, namely mLRTa and mLRTb, wherein consistency is cast as the alternative and null hypotheses. Notably, our exploration unveils that qualitative methods such as the funnel approach and PMDA methods are special instances of mLRTa. Furthermore, our work underscores that these three qualitative methodologies roughly share the same level of assurance probability (AP). Intriguingly, when the number of regions in an MRCT surpasses five, even when the overall sample size guarantees a power of 90% or more and the true treatment effects remain uniform across regions, the AP remains below the 70% mark. Drawing from our meticulous examination of operational attributes, we recommend mLRTa with positive treatment effects in all regions in the alternative hypothesis with significance level 0.5 or mLRTb with all regional treatment effects being equal in the null and significance level of 0.2.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"973-985"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional consistency assessment in multiregional clinical trials.\",\"authors\":\"Gang Li, Hui Quan, Yining Wang\",\"doi\":\"10.1080/10543406.2024.2330214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiregional clinical trials (MRCTs) have become a favored strategy for new drug development. The accurate evaluation of treatment effects across different regions is crucial for interpreting the results of MRCTs. Consistency between regional and overall results ensures the extrapolability of the overall conclusions to individual regions. While numerous statistical methods have been proposed for consistency assessment, a notable proportion necessitate a substantial escalation in sample size, particularly in scenarios involving more than four regions within MRCTs. This, paradoxically, undermines the fundamental intent of MRCTs. In addition, standardized statistical criteria for concluding consistency are yet to be established. In this paper, we develop further consistency assessment approaches in the framework of two multivariate likelihood ratio test-based methods, namely mLRTa and mLRTb, wherein consistency is cast as the alternative and null hypotheses. Notably, our exploration unveils that qualitative methods such as the funnel approach and PMDA methods are special instances of mLRTa. Furthermore, our work underscores that these three qualitative methodologies roughly share the same level of assurance probability (AP). Intriguingly, when the number of regions in an MRCT surpasses five, even when the overall sample size guarantees a power of 90% or more and the true treatment effects remain uniform across regions, the AP remains below the 70% mark. Drawing from our meticulous examination of operational attributes, we recommend mLRTa with positive treatment effects in all regions in the alternative hypothesis with significance level 0.5 or mLRTb with all regional treatment effects being equal in the null and significance level of 0.2.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"973-985\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2330214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

多区域临床试验(MRCT)已成为新药开发的首选策略。准确评估不同地区的治疗效果对于解释 MRCT 的结果至关重要。区域结果和总体结果之间的一致性确保了总体结论在个别区域的可推断性。虽然已经提出了许多用于一致性评估的统计方法,但有相当一部分方法需要大幅提高样本量,尤其是在 MRCT 中涉及四个以上地区的情况下。矛盾的是,这破坏了 MRCT 的基本意图。此外,得出一致性结论的标准化统计标准尚未建立。在本文中,我们在两种基于多元似然比检验的方法(即 mLRTa 和 mLRTb)框架内进一步开发了一致性评估方法,其中一致性被视为备择假设和零假设。值得注意的是,我们的探索揭示了漏斗法和 PMDA 法等定性方法是 mLRTa 的特殊实例。此外,我们的研究还强调,这三种定性方法的保证概率(AP)水平大致相同。耐人寻味的是,当 MRCT 中的地区数量超过 5 个时,即使总体样本量能保证 90% 或更高的功率,并且各地区的真实治疗效果保持一致,保证概率仍低于 70% 大关。根据我们对操作属性的细致研究,我们建议采用 mLRTa,即所有地区的治疗效果均为正值,显著性水平为 0.5;或者采用 mLRTb,即所有地区的治疗效果均为负值,显著性水平为 0.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regional consistency assessment in multiregional clinical trials.

Multiregional clinical trials (MRCTs) have become a favored strategy for new drug development. The accurate evaluation of treatment effects across different regions is crucial for interpreting the results of MRCTs. Consistency between regional and overall results ensures the extrapolability of the overall conclusions to individual regions. While numerous statistical methods have been proposed for consistency assessment, a notable proportion necessitate a substantial escalation in sample size, particularly in scenarios involving more than four regions within MRCTs. This, paradoxically, undermines the fundamental intent of MRCTs. In addition, standardized statistical criteria for concluding consistency are yet to be established. In this paper, we develop further consistency assessment approaches in the framework of two multivariate likelihood ratio test-based methods, namely mLRTa and mLRTb, wherein consistency is cast as the alternative and null hypotheses. Notably, our exploration unveils that qualitative methods such as the funnel approach and PMDA methods are special instances of mLRTa. Furthermore, our work underscores that these three qualitative methodologies roughly share the same level of assurance probability (AP). Intriguingly, when the number of regions in an MRCT surpasses five, even when the overall sample size guarantees a power of 90% or more and the true treatment effects remain uniform across regions, the AP remains below the 70% mark. Drawing from our meticulous examination of operational attributes, we recommend mLRTa with positive treatment effects in all regions in the alternative hypothesis with significance level 0.5 or mLRTb with all regional treatment effects being equal in the null and significance level of 0.2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1