{"title":"利用数字孪生技术优化纺织品染色工艺,减少温室气体排放","authors":"Minsuk Kim, Jae Yun Shim, Seungju Lim, Heedong Lee, Soon Chul Kwon, Seokil Hong, Sujin Ryu","doi":"10.1186/s40691-024-00384-w","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to global warming and pollution concerns, reducing the environmental footprint of the textile and fashion industry has received considerable attention. Within this industry, the dyeing and finishing processes contribute significantly to greenhouse gas emissions and water pollution. This study introduces an innovative approach to address these challenges by leveraging digital twin technology to optimize the textile dyeing process. A smart analysis module was developed to continuously monitor and analyze the dyeing parameters in real time to implement control actions to automatically reduce the process duration. Integrated with this module, a digital twin of the dyeing machine enabled the real-time monitoring of energy consumption and process parameters. A case study comparing the traditional dyeing process with the optimized process was conducted. The results showed that dyeing time was reduced by ~ 17.5% without compromising dyeing quality. Energy consumption and greenhouse gas emissions were also reduced by ~ 12.1% when using the optimized process. This study offers a practical and sustainable option for textile dyeing, particularly for small and medium-sized enterprises.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00384-w","citationCount":"0","resultStr":"{\"title\":\"Reduction of greenhouse gas emissions by optimizing the textile dyeing process using digital twin technology\",\"authors\":\"Minsuk Kim, Jae Yun Shim, Seungju Lim, Heedong Lee, Soon Chul Kwon, Seokil Hong, Sujin Ryu\",\"doi\":\"10.1186/s40691-024-00384-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to global warming and pollution concerns, reducing the environmental footprint of the textile and fashion industry has received considerable attention. Within this industry, the dyeing and finishing processes contribute significantly to greenhouse gas emissions and water pollution. This study introduces an innovative approach to address these challenges by leveraging digital twin technology to optimize the textile dyeing process. A smart analysis module was developed to continuously monitor and analyze the dyeing parameters in real time to implement control actions to automatically reduce the process duration. Integrated with this module, a digital twin of the dyeing machine enabled the real-time monitoring of energy consumption and process parameters. A case study comparing the traditional dyeing process with the optimized process was conducted. The results showed that dyeing time was reduced by ~ 17.5% without compromising dyeing quality. Energy consumption and greenhouse gas emissions were also reduced by ~ 12.1% when using the optimized process. This study offers a practical and sustainable option for textile dyeing, particularly for small and medium-sized enterprises.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00384-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-024-00384-w\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-024-00384-w","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Reduction of greenhouse gas emissions by optimizing the textile dyeing process using digital twin technology
Owing to global warming and pollution concerns, reducing the environmental footprint of the textile and fashion industry has received considerable attention. Within this industry, the dyeing and finishing processes contribute significantly to greenhouse gas emissions and water pollution. This study introduces an innovative approach to address these challenges by leveraging digital twin technology to optimize the textile dyeing process. A smart analysis module was developed to continuously monitor and analyze the dyeing parameters in real time to implement control actions to automatically reduce the process duration. Integrated with this module, a digital twin of the dyeing machine enabled the real-time monitoring of energy consumption and process parameters. A case study comparing the traditional dyeing process with the optimized process was conducted. The results showed that dyeing time was reduced by ~ 17.5% without compromising dyeing quality. Energy consumption and greenhouse gas emissions were also reduced by ~ 12.1% when using the optimized process. This study offers a practical and sustainable option for textile dyeing, particularly for small and medium-sized enterprises.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.