利用自组装技术降低跨扫描仪低剂量脑 PET 图像噪声

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2023-12-27 DOI:10.1109/TRPMS.2023.3347602
Jiale Wang;Rui Guo;Ying Miao;Song Xue;Yu Zhang;Kuangyu Shi;Guoyan Zheng;Biao Li
{"title":"利用自组装技术降低跨扫描仪低剂量脑 PET 图像噪声","authors":"Jiale Wang;Rui Guo;Ying Miao;Song Xue;Yu Zhang;Kuangyu Shi;Guoyan Zheng;Biao Li","doi":"10.1109/TRPMS.2023.3347602","DOIUrl":null,"url":null,"abstract":"Deep learning models have shown great potential in reducing low-dose (LD) positron emission tomography (PET) image noise by estimating full-dose (FD) images from the corresponding LD images. Those models, however, when trained on paired LD-FD PET images from a source scanner, fail to generalize well when applied to LD PET images from a target scanner, due to a phenomenon called “domain drift.” In this study, we present a method for cross-scanner LD PET image noise reduction. This is done via a self-ensembling framework using a limited number of paired LD-FD PET images and a large number of LD PET images from the target scanner. The self-ensembling framework leverages the paired 2-D slices from both scanners to learn a regression model. It additionally incorporates a consistency loss on the LD PET images from the target scanner to enhance the model’s generalization capability. We conduct experiments on three datasets, respectively, acquired from three different scanners, including a GE Discovery MI (DMI) scanner, a Siemens Biograph Vision 450 (Vision) scanner, and a UI uMI 780 (uMI) scanner. Results from our comprehensive experiments demonstrate the generalization capability of our method.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 4","pages":"391-401"},"PeriodicalIF":4.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Scanner Low-Dose Brain-PET Image Noise Reduction With Self-Ensembling\",\"authors\":\"Jiale Wang;Rui Guo;Ying Miao;Song Xue;Yu Zhang;Kuangyu Shi;Guoyan Zheng;Biao Li\",\"doi\":\"10.1109/TRPMS.2023.3347602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models have shown great potential in reducing low-dose (LD) positron emission tomography (PET) image noise by estimating full-dose (FD) images from the corresponding LD images. Those models, however, when trained on paired LD-FD PET images from a source scanner, fail to generalize well when applied to LD PET images from a target scanner, due to a phenomenon called “domain drift.” In this study, we present a method for cross-scanner LD PET image noise reduction. This is done via a self-ensembling framework using a limited number of paired LD-FD PET images and a large number of LD PET images from the target scanner. The self-ensembling framework leverages the paired 2-D slices from both scanners to learn a regression model. It additionally incorporates a consistency loss on the LD PET images from the target scanner to enhance the model’s generalization capability. We conduct experiments on three datasets, respectively, acquired from three different scanners, including a GE Discovery MI (DMI) scanner, a Siemens Biograph Vision 450 (Vision) scanner, and a UI uMI 780 (uMI) scanner. Results from our comprehensive experiments demonstrate the generalization capability of our method.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 4\",\"pages\":\"391-401\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375271/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10375271/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型通过从相应的低剂量(LD)图像中估计全剂量(FD)图像,在减少低剂量(LD)正电子发射断层扫描(PET)图像噪声方面显示出巨大的潜力。然而,当这些模型在来自源扫描仪的成对 LD-FD PET 图像上进行训练时,由于一种称为 "域漂移 "的现象,当应用到来自目标扫描仪的 LD PET 图像时,这些模型不能很好地泛化。在这项研究中,我们提出了一种跨扫描仪 LD PET 图像降噪方法。该方法通过一个自组装框架来实现,该框架使用数量有限的配对 LD-FD PET 图像和大量来自目标扫描仪的 LD PET 图像。自组装框架利用两台扫描仪的配对二维切片来学习回归模型。此外,它还在目标扫描仪的 LD PET 图像上加入了一致性损失,以增强模型的泛化能力。我们在三个数据集上进行了实验,这三个数据集分别来自三个不同的扫描仪,包括 GE Discovery MI(DMI)扫描仪、Siemens Biograph Vision 450(Vision)扫描仪和 UI uMI 780(uMI)扫描仪。综合实验结果证明了我们方法的通用能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Scanner Low-Dose Brain-PET Image Noise Reduction With Self-Ensembling
Deep learning models have shown great potential in reducing low-dose (LD) positron emission tomography (PET) image noise by estimating full-dose (FD) images from the corresponding LD images. Those models, however, when trained on paired LD-FD PET images from a source scanner, fail to generalize well when applied to LD PET images from a target scanner, due to a phenomenon called “domain drift.” In this study, we present a method for cross-scanner LD PET image noise reduction. This is done via a self-ensembling framework using a limited number of paired LD-FD PET images and a large number of LD PET images from the target scanner. The self-ensembling framework leverages the paired 2-D slices from both scanners to learn a regression model. It additionally incorporates a consistency loss on the LD PET images from the target scanner to enhance the model’s generalization capability. We conduct experiments on three datasets, respectively, acquired from three different scanners, including a GE Discovery MI (DMI) scanner, a Siemens Biograph Vision 450 (Vision) scanner, and a UI uMI 780 (uMI) scanner. Results from our comprehensive experiments demonstrate the generalization capability of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Three-Gamma Imaging in Nuclear Medicine: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1